Compatibility in Ozsváth–Szabó’s bordered HFK via higher representations

IF 0.7 3区 数学 Q2 MATHEMATICS
William Chang, A. Manion
{"title":"Compatibility in Ozsváth–Szabó’s bordered\nHFK via higher representations","authors":"William Chang, A. Manion","doi":"10.2140/pjm.2023.323.253","DOIUrl":null,"url":null,"abstract":"We equip the basic local crossing bimodules in Ozsv\\'ath-Szab\\'o's theory of bordered knot Floer homology with the structure of 1-morphisms of 2-representations, categorifying the $U_q(\\mathfrak{gl}(1|1)^+)$-intertwining property of the corresponding maps between ordinary representations. Besides yielding a new connection between bordered knot Floer homology and higher representation theory in line with work of Rouquier and the second author, this structure gives an algebraic reformulation of a ``compatibility between summands'' property for Ozsv\\'ath-Szab\\'o's bimodules that is important when building their theory up from local crossings to more global tangles and knots.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.323.253","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We equip the basic local crossing bimodules in Ozsv\'ath-Szab\'o's theory of bordered knot Floer homology with the structure of 1-morphisms of 2-representations, categorifying the $U_q(\mathfrak{gl}(1|1)^+)$-intertwining property of the corresponding maps between ordinary representations. Besides yielding a new connection between bordered knot Floer homology and higher representation theory in line with work of Rouquier and the second author, this structure gives an algebraic reformulation of a ``compatibility between summands'' property for Ozsv\'ath-Szab\'o's bimodules that is important when building their theory up from local crossings to more global tangles and knots.
Ozsváth-Szabó的borderedHFK通过更高的表示的兼容性
我们将Ozsv\'ath-Szab\'o的有边结花同调理论中的基本局部交叉双模赋予了2-表示的1-态的结构,分类了普通表示之间对应映射的$U_q(\mathfrak{gl}(1|1)^+)$-缠结性质。除了根据Rouquier和第二作者的工作在边界结花同调和高级表示理论之间建立了新的联系之外,这个结构给出了Ozsv\' atha - szab \'o双模的“和之间的相容性”性质的代数重新表述,这在将他们的理论从局部交叉建立到更全局的缠结和结时很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信