The fully marked surface theorem

IF 4.9 1区 数学 Q1 MATHEMATICS
David Gabai, Mehdi Yazdi
{"title":"The fully marked surface theorem","authors":"David Gabai, Mehdi Yazdi","doi":"10.4310/ACTA.2020.V225.N2.A4","DOIUrl":null,"url":null,"abstract":"In his seminal 1976 paper Bill Thurston observed that a closed leaf S of a foliation has Euler characteristic equal, up to sign, to the Euler class of the foliation evaluated on [S], the homology class represented by S. The main result of this paper is a converse for taut foliations: if the Euler class of a taut foliation $\\mathcal{F}$ evaluated on [S] equals up to sign the Euler characteristic of S and the underlying manifold is hyperbolic, then there exists another taut foliation $\\mathcal{F'}$ such that $S$ is homologous to a union of leaves and such that the plane field of $\\mathcal{F'}$ is homotopic to that of $\\mathcal{F}$. In particular, $\\mathcal{F}$ and $\\mathcal{F'}$ have the same Euler class. \nIn the same paper Thurston proved that taut foliations on closed hyperbolic 3-manifolds have Euler class of norm at most one, and conjectured that, conversely, any integral cohomology class with norm equal to one is the Euler class of a taut foliation. This is the second of two papers that together give a negative answer to Thurston's conjecture. In the first paper, counterexamples were constructed assuming the main result of this paper.","PeriodicalId":50895,"journal":{"name":"Acta Mathematica","volume":"1 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ACTA.2020.V225.N2.A4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

In his seminal 1976 paper Bill Thurston observed that a closed leaf S of a foliation has Euler characteristic equal, up to sign, to the Euler class of the foliation evaluated on [S], the homology class represented by S. The main result of this paper is a converse for taut foliations: if the Euler class of a taut foliation $\mathcal{F}$ evaluated on [S] equals up to sign the Euler characteristic of S and the underlying manifold is hyperbolic, then there exists another taut foliation $\mathcal{F'}$ such that $S$ is homologous to a union of leaves and such that the plane field of $\mathcal{F'}$ is homotopic to that of $\mathcal{F}$. In particular, $\mathcal{F}$ and $\mathcal{F'}$ have the same Euler class. In the same paper Thurston proved that taut foliations on closed hyperbolic 3-manifolds have Euler class of norm at most one, and conjectured that, conversely, any integral cohomology class with norm equal to one is the Euler class of a taut foliation. This is the second of two papers that together give a negative answer to Thurston's conjecture. In the first paper, counterexamples were constructed assuming the main result of this paper.
完全标记曲面定理
Bill Thurston在其1976年的开创性论文中观察到,叶理的闭叶S的欧拉特征与[S]上评估的叶理的欧拉类(由S表示的同源类)一致。本文的主要结果是张叶理的逆:如果在[S]上评估的张叶理$\mathcal{F}$的欧拉类等于S的欧拉特征,并且下面的流形是双曲的,则存在另一张紧叶理$\mathcal{F’}$,使得$S$与叶的并集同源。特别是,$\mathcal{F}$和$\mathical{F’}$具有相同的Euler类。在同一篇论文中,Thurston证明了闭双曲3-流形上的张叶理具有最多为1的欧拉范数类,并推测反过来,任何范数等于1的积分上同调类都是张叶理的欧拉类。这是两篇论文中的第二篇,这两篇论文共同对瑟斯顿猜想给出了否定的答案。在第一篇论文中,假设本文的主要结果,构造了反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mathematica
Acta Mathematica 数学-数学
CiteScore
6.00
自引率
2.70%
发文量
6
审稿时长
>12 weeks
期刊介绍: Publishes original research papers of the highest quality in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信