Quantification and Analysis of Suspended Sediments Concentration Using Mobile and Static Acoustic Doppler Current Profiler Instruments

Q2 Physics and Astronomy
A. Dwinovantyo, H. Manik, T. Prartono, S. Susilohadi
{"title":"Quantification and Analysis of Suspended Sediments Concentration Using Mobile and Static Acoustic Doppler Current Profiler Instruments","authors":"A. Dwinovantyo, H. Manik, T. Prartono, S. Susilohadi","doi":"10.1155/2017/4890421","DOIUrl":null,"url":null,"abstract":"The application of Acoustic Doppler Current Profiler (ADCP) can be used not only for measuring ocean currents, but also for quantifying suspended sediment concentrations (SSC) from acoustic backscatter strength based on sonar principle. Suspended sediment has long been recognized as the largest sources of sea contaminant and must be considered as one of the important parameters in water quality of seawater. This research was to determine SSC from measured acoustic backscattered intensity of static and mobile ADCP. In this study, vertically mounted 400 kHz and 750 kHz static ADCP were deployed in Lembeh Strait, North Sulawesi. A mobile ADCP 307.2 kHz was also mounted on the boat and moved to the predefined cross-section, accordingly. The linear regression analysis of echo intensity measured by ADCP and by direct measurement methods showed that ADCP is a reliable method to measure SSC with correlation coefficient ( ) 0.92. Higher SSC was observed in low water compared to that in high water and near port area compared to those in observed areas. All of this analysis showed that the combination of static and mobile ADCP methods produces reasonably good spatial and temporal data of SSC.","PeriodicalId":44068,"journal":{"name":"Advances in Acoustics and Vibration","volume":"2017 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/4890421","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Acoustics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/4890421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 13

Abstract

The application of Acoustic Doppler Current Profiler (ADCP) can be used not only for measuring ocean currents, but also for quantifying suspended sediment concentrations (SSC) from acoustic backscatter strength based on sonar principle. Suspended sediment has long been recognized as the largest sources of sea contaminant and must be considered as one of the important parameters in water quality of seawater. This research was to determine SSC from measured acoustic backscattered intensity of static and mobile ADCP. In this study, vertically mounted 400 kHz and 750 kHz static ADCP were deployed in Lembeh Strait, North Sulawesi. A mobile ADCP 307.2 kHz was also mounted on the boat and moved to the predefined cross-section, accordingly. The linear regression analysis of echo intensity measured by ADCP and by direct measurement methods showed that ADCP is a reliable method to measure SSC with correlation coefficient ( ) 0.92. Higher SSC was observed in low water compared to that in high water and near port area compared to those in observed areas. All of this analysis showed that the combination of static and mobile ADCP methods produces reasonably good spatial and temporal data of SSC.
移动和静态声学多普勒电流剖面仪对悬浮沉积物浓度的定量分析
声学多普勒海流剖面仪(ADCP)的应用不仅可以测量海流,还可以基于声呐原理,利用声学后向散射强度定量测定悬浮泥沙浓度(SSC)。悬浮泥沙一直被认为是海洋污染物的最大来源,是影响海水水质的重要参数之一。本研究是通过测量静态和移动ADCP的声散射强度来确定SSC。本研究在北苏拉威西Lembeh海峡部署了垂直安装的400 kHz和750 kHz静态ADCP。移动ADCP 307.2 kHz也安装在船上,并相应地移动到预定义的横截面。对ADCP测量回波强度与直接测量回波强度的线性回归分析表明,ADCP是测量SSC的可靠方法,相关系数为0.92。低水位区SSC高于高水位区,近港区SSC高于观测区。上述分析表明,静态和移动ADCP方法相结合可获得较好的SSC时空数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: The aim of Advances in Acoustics and Vibration is to act as a platform for dissemination of innovative and original research and development work in the area of acoustics and vibration. The target audience of the journal comprises both researchers and practitioners. Articles with innovative works of theoretical and/or experimental nature with research and/or application focus can be considered for publication in the journal. Articles submitted for publication in Advances in Acoustics and Vibration must neither have been published previously nor be under consideration elsewhere. Subject areas include (but are not limited to): Active, semi-active, passive and combined active-passive noise and vibration control Acoustic signal processing Aero-acoustics and aviation noise Architectural acoustics Audio acoustics, mechanisms of human hearing, musical acoustics Community and environmental acoustics and vibration Computational acoustics, numerical techniques Condition monitoring, health diagnostics, vibration testing, non-destructive testing Human response to sound and vibration, Occupational noise exposure and control Industrial, machinery, transportation noise and vibration Low, mid, and high frequency noise and vibration Materials for noise and vibration control Measurement and actuation techniques, sensors, actuators Modal analysis, statistical energy analysis, wavelet analysis, inverse methods Non-linear acoustics and vibration Sound and vibration sources, source localisation, sound propagation Underwater and ship acoustics Vibro-acoustics and shock.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信