{"title":"Reduced ordered binary decision diagram-based combinational circuit synthesis for optimising area, power and temperature","authors":"Apangshu Das, Akash Debnath, S. Pradhan","doi":"10.1504/IJNP.2019.10020325","DOIUrl":null,"url":null,"abstract":"In this paper, an attempt is made to reduce the rise in circuit temperature by optimising power-density during logic synthesis level. Reduced ordered binary decision diagram (ROBDD) being canonical in nature makes a suitable choice of logic realisation in this work. ROBDD is used here not only to reduce area (node) but also the possibility of reducing power and temperature (power-density) is explored. In this work, a genetic algorithm based approach is presented to determine a suitable variable ordering during the formation of the ROBDD for its thermal-aware realisation considering other parameters like area and power without performance degradation. The proposed approach shows more than 33% savings in area and power, and 5.61% savings in power-density with respect to initial ROBDD representation of LGSynth93 benchmark circuits. Actual on-chip area, power dissipation and the absolute value of temperature are calculated using CADENCE and HotSpot tool to validate the power-density based results.","PeriodicalId":14016,"journal":{"name":"International Journal of Nanoparticles","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNP.2019.10020325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, an attempt is made to reduce the rise in circuit temperature by optimising power-density during logic synthesis level. Reduced ordered binary decision diagram (ROBDD) being canonical in nature makes a suitable choice of logic realisation in this work. ROBDD is used here not only to reduce area (node) but also the possibility of reducing power and temperature (power-density) is explored. In this work, a genetic algorithm based approach is presented to determine a suitable variable ordering during the formation of the ROBDD for its thermal-aware realisation considering other parameters like area and power without performance degradation. The proposed approach shows more than 33% savings in area and power, and 5.61% savings in power-density with respect to initial ROBDD representation of LGSynth93 benchmark circuits. Actual on-chip area, power dissipation and the absolute value of temperature are calculated using CADENCE and HotSpot tool to validate the power-density based results.