{"title":"Natural frequencies analysis of functionally graded circular cylindrical shells","authors":"Nabeel Alshabatat, Mohammad Zannon","doi":"10.24132/acm.2021.654","DOIUrl":null,"url":null,"abstract":"In the present work, a study on natural frequencies of functionally graded materials (FGM) circular cylindrical shells is presented. TheFGM is considered to be a mixture of two materials. The volumetric fractions are considered to vary in the radial direction (i.e., through the thickness) in compliance with a conventional power-law distribution. The equivalent material properties are estimated based on the Voigt model. The analysis of the FGM cylindrical shells is performed using the third-order shear deformation shell theory and the principle of virtual displacements. Moreover, the third-order shear deformation shell theory coupled with Carrera’s unified formulation is applied for the derivation of the governing equations associated with the free vibration of circular cylindrical shells. The accuracy of this method is examined by comparing the obtained numerical results with other previously published results. Additionally, parametric studies are performed for FGM cylindrical shells with several boundary conditions in order to show the effect of several design variables on the natural frequencies such as the power-law exponent, the circumferential wave number, the length to radius ratio and the thickness to radius ratio.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24132/acm.2021.654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
In the present work, a study on natural frequencies of functionally graded materials (FGM) circular cylindrical shells is presented. TheFGM is considered to be a mixture of two materials. The volumetric fractions are considered to vary in the radial direction (i.e., through the thickness) in compliance with a conventional power-law distribution. The equivalent material properties are estimated based on the Voigt model. The analysis of the FGM cylindrical shells is performed using the third-order shear deformation shell theory and the principle of virtual displacements. Moreover, the third-order shear deformation shell theory coupled with Carrera’s unified formulation is applied for the derivation of the governing equations associated with the free vibration of circular cylindrical shells. The accuracy of this method is examined by comparing the obtained numerical results with other previously published results. Additionally, parametric studies are performed for FGM cylindrical shells with several boundary conditions in order to show the effect of several design variables on the natural frequencies such as the power-law exponent, the circumferential wave number, the length to radius ratio and the thickness to radius ratio.
期刊介绍:
The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.