Radial growth of the derivatives of analytic functions in Besov spaces

IF 0.3 Q4 MATHEMATICS
S. Dominguez, D. Girela
{"title":"Radial growth of the derivatives of analytic functions in Besov spaces","authors":"S. Dominguez, D. Girela","doi":"10.1515/conop-2020-0107","DOIUrl":null,"url":null,"abstract":"Abstract For 1 < p < ∞, the Besov space Bp consists of those functions f which are analytic in the unit disc 𝔻 = {z ∈ 𝔺 : |z| < 1} and satisfy ∫𝔻(1 − |z|2)p−2|f ′(z)|p dA(z) < ∞. The space B2 reduces to the classical Dirichlet space 𝒟. It is known that if f ∈ 𝒟then |f ′(reiθ)| = o[(1 − r)−1/2], for almost every ∈ [0, 2π]. Hallenbeck and Samotij proved that this result is sharp in a very strong sense. We obtain substitutes of the above results valid for the spaces Bp (1 < p < ∞) an we give also an application of our them to questions concerning multipliers between Besov spaces.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2020-0107","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2020-0107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract For 1 < p < ∞, the Besov space Bp consists of those functions f which are analytic in the unit disc 𝔻 = {z ∈ 𝔺 : |z| < 1} and satisfy ∫𝔻(1 − |z|2)p−2|f ′(z)|p dA(z) < ∞. The space B2 reduces to the classical Dirichlet space 𝒟. It is known that if f ∈ 𝒟then |f ′(reiθ)| = o[(1 − r)−1/2], for almost every ∈ [0, 2π]. Hallenbeck and Samotij proved that this result is sharp in a very strong sense. We obtain substitutes of the above results valid for the spaces Bp (1 < p < ∞) an we give also an application of our them to questions concerning multipliers between Besov spaces.
Besov空间中解析函数导数的径向增长
当1 < p <∞时,Besov空间Bp由在单位圆盘上的解析函数f = {z∈𝔺:|z| < 1}且满足∫(1−|z|2)p−2|f ' (z)|p dA(z) <∞构成。空间B2简化为经典的狄利克雷空间。已知如果f∈𝒟then |f ' (reito)| = 0[(1−r)−1/2],对于几乎所有∈[0,2 π]。Hallenbeck和Samotij证明了这个结果在很强的意义上是尖锐的。我们得到了上述结果对空间Bp (1 < p <∞)有效的代换,并给出了它们在Besov空间间乘子问题上的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信