Siwei He, D. Turner, S. Benjamin, J. Olson, T. Smirnova, T. Meyers
{"title":"Evaluation of the near-surface variables in the HRRR weather model using observations from the ARM SGP site","authors":"Siwei He, D. Turner, S. Benjamin, J. Olson, T. Smirnova, T. Meyers","doi":"10.1175/jamc-d-23-0003.1","DOIUrl":null,"url":null,"abstract":"\nThe performance of version 4 of the NOAA High-Resolution Rapid Refresh (HRRR) numerical weather prediction model for near-surface variables, including wind, humidity, temperature, surface latent and sensible fluxes, and longwave and shortwave radiative fluxes, is examined over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) region. The study evaluated the model’s bias and bias-corrected mean absolute error relative to the observations on different time scales. Forecasts of near-surface geophysical variables at five SGP sites (HRRR at 3-km scale) were found to agree well with observations, but some consistent observation-forecast differences also occurred. Sensible and latent heat fluxes are the most challenging variables to be reproduced. The diurnal cycle is the main temporal scale affecting observation-forecast differences of the near-surface variables, and almost all of the variables showed different biases throughout the diurnal cycle. Results show that the overestimation of downward shortwave and the underestimation of downward longwave radiative flux are the two major biases found in this study. The timing and magnitude of downward longwave flux, wind speed, sensible and latent heat fluxes are also different with contributions from model representations, data assimilation limitations, and differences in scales between HRRR and SGP sites. The positive bias in downward shortwave and negative bias in longwave radiation suggests that the model is underestimating cloud fraction in the study domain. The study concludes by showing a brief comparison against version 3 of the HRRR, and shows that version 4 has better performance in almost all near surface variables.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jamc-d-23-0003.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of version 4 of the NOAA High-Resolution Rapid Refresh (HRRR) numerical weather prediction model for near-surface variables, including wind, humidity, temperature, surface latent and sensible fluxes, and longwave and shortwave radiative fluxes, is examined over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) region. The study evaluated the model’s bias and bias-corrected mean absolute error relative to the observations on different time scales. Forecasts of near-surface geophysical variables at five SGP sites (HRRR at 3-km scale) were found to agree well with observations, but some consistent observation-forecast differences also occurred. Sensible and latent heat fluxes are the most challenging variables to be reproduced. The diurnal cycle is the main temporal scale affecting observation-forecast differences of the near-surface variables, and almost all of the variables showed different biases throughout the diurnal cycle. Results show that the overestimation of downward shortwave and the underestimation of downward longwave radiative flux are the two major biases found in this study. The timing and magnitude of downward longwave flux, wind speed, sensible and latent heat fluxes are also different with contributions from model representations, data assimilation limitations, and differences in scales between HRRR and SGP sites. The positive bias in downward shortwave and negative bias in longwave radiation suggests that the model is underestimating cloud fraction in the study domain. The study concludes by showing a brief comparison against version 3 of the HRRR, and shows that version 4 has better performance in almost all near surface variables.
期刊介绍:
The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.