{"title":"INS/Odometer Integration: Positional Approach","authors":"A. Golovan","doi":"10.17285/0869-7035.0066","DOIUrl":null,"url":null,"abstract":"Abstract The problem of a strapdown inertial navigation system (SINS) integration with an odometer as part of an integrated navigation system is considered. The odometer raw measurement is considered as an increment of the distance traveled along the odometer “measuring” axis. Models of the integration solution components for the case of three-dimensional navigation are presented, among which are the models of inertial autonomous and kinematic odometer dead reckoning (DR), models of relevant error equations, the model of SINS position aiding based on the odometer DR data and using GNSS position and velocity, wherever possible. The models comprise objective components, which do not depend on the type of the inertial sensors used and their accuracy grade, and variable components, which take into account the properties of the navigation sensors used. The integration does not require zero velocity updates, known as ZUPT correction, which are commonly used in navigation application.","PeriodicalId":38999,"journal":{"name":"Gyroscopy and Navigation","volume":"12 1","pages":"186-194"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gyroscopy and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17285/0869-7035.0066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The problem of a strapdown inertial navigation system (SINS) integration with an odometer as part of an integrated navigation system is considered. The odometer raw measurement is considered as an increment of the distance traveled along the odometer “measuring” axis. Models of the integration solution components for the case of three-dimensional navigation are presented, among which are the models of inertial autonomous and kinematic odometer dead reckoning (DR), models of relevant error equations, the model of SINS position aiding based on the odometer DR data and using GNSS position and velocity, wherever possible. The models comprise objective components, which do not depend on the type of the inertial sensors used and their accuracy grade, and variable components, which take into account the properties of the navigation sensors used. The integration does not require zero velocity updates, known as ZUPT correction, which are commonly used in navigation application.
期刊介绍:
Gyroscopy and Navigation is an international peer reviewed journal that covers the following subjects: inertial sensors, navigation and orientation systems; global satellite navigation systems; integrated INS/GNSS navigation systems; navigation in GNSS-degraded environments and indoor navigation; gravimetric systems and map-aided navigation; hydroacoustic navigation systems; navigation devices and sensors (logs, echo sounders, magnetic compasses); navigation and sonar data processing algorithms. The journal welcomes manuscripts from all countries in the English or Russian language.