{"title":"Advanced Information Mining from Ocean Remote Sensing Imagery with Deep Learning","authors":"Xiaofeng Li, Yuan Zhou, Fan Wang","doi":"10.34133/2022/9849645","DOIUrl":null,"url":null,"abstract":"In the past decades, the increasing ocean-research-oriented satellites, sensors, acquisition, and distribution channels have brought new tasks and challenges to mine information from such big data with complex and sparse information. The information mining requirements from big data and the advance in deep learning (DL) technology showed mutual promotive benefits in practical ocean information extraction and DL-based framework development. In 2020, scientists showed that most information retrievals from ocean remote sensing images could be accomplished using existing DL network frameworks, i.e., U-net for semantic segmentation and SSD (Single-Shot Multi-box Detection) for object detection [1]. The U-Net’s almost symmetric encoder-decoder structure and the skip connection between encoder-decoders have an excellent performance in retrieving fundamental semantic segmentation information in the ocean remote sensing imagery, such as coastal inundation area extractions [2]. SSD extracts feature maps of different data scales and takes a priori frames of different scales. Therefore, it has an excellent performance in detecting fundamental object detection problems in the ocean field, such as ship detection [3]. Although the off-the-shelf DL-based models are helpful, new developments in this field lead to a new era of DL-based technology for ocean remote sensing information mining. Specifically, two developments should be incorporated into the specific task-driven DL model: network architecture advance and domain-knowledge-based (expert knowledge) guidance in model parameter selection. Figure 1 upper panel shows the general framework used in [1] and the two newly added boxes that are the key elements we address in this paper.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/2022/9849645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
In the past decades, the increasing ocean-research-oriented satellites, sensors, acquisition, and distribution channels have brought new tasks and challenges to mine information from such big data with complex and sparse information. The information mining requirements from big data and the advance in deep learning (DL) technology showed mutual promotive benefits in practical ocean information extraction and DL-based framework development. In 2020, scientists showed that most information retrievals from ocean remote sensing images could be accomplished using existing DL network frameworks, i.e., U-net for semantic segmentation and SSD (Single-Shot Multi-box Detection) for object detection [1]. The U-Net’s almost symmetric encoder-decoder structure and the skip connection between encoder-decoders have an excellent performance in retrieving fundamental semantic segmentation information in the ocean remote sensing imagery, such as coastal inundation area extractions [2]. SSD extracts feature maps of different data scales and takes a priori frames of different scales. Therefore, it has an excellent performance in detecting fundamental object detection problems in the ocean field, such as ship detection [3]. Although the off-the-shelf DL-based models are helpful, new developments in this field lead to a new era of DL-based technology for ocean remote sensing information mining. Specifically, two developments should be incorporated into the specific task-driven DL model: network architecture advance and domain-knowledge-based (expert knowledge) guidance in model parameter selection. Figure 1 upper panel shows the general framework used in [1] and the two newly added boxes that are the key elements we address in this paper.
遥感学报Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
The predecessor of Journal of Remote Sensing is Remote Sensing of Environment, which was founded in 1986. It was born in the beginning of China's remote sensing career and is the first remote sensing journal that has grown up with the development of China's remote sensing career. Since its inception, the Journal of Remote Sensing has published a large number of the latest scientific research results in China and the results of nationally-supported research projects in the light of the priorities and needs of China's remote sensing endeavours at different times, playing a great role in the development of remote sensing science and technology and the cultivation of talents in China, and becoming the most influential academic journal in the field of remote sensing and geographic information science in China.
As the only national comprehensive academic journal in the field of remote sensing in China, Journal of Remote Sensing is dedicated to reporting the research reports, stage-by-stage research briefs and high-level reviews in the field of remote sensing and its related disciplines with international and domestic advanced level. It focuses on new concepts, results and progress in this field. It covers the basic theories of remote sensing, the development of remote sensing technology and the application of remote sensing in the fields of agriculture, forestry, hydrology, geology, mining, oceanography, mapping and other resource and environmental fields as well as in disaster monitoring, research on geographic information systems (GIS), and the integration of remote sensing with GIS and the Global Navigation Satellite System (GNSS) and its applications.