A Sequential Shrinkage Estimating Method for Tobit Regression Model

H. Lu, Cuiling Dong, Juling Zhou
{"title":"A Sequential Shrinkage Estimating Method for Tobit Regression Model","authors":"H. Lu, Cuiling Dong, Juling Zhou","doi":"10.4236/ojmsi.2021.93018","DOIUrl":null,"url":null,"abstract":"In the applications of Tobit regression models we always encounter the \ndata sets which contain too many variables that only a few of them contribute \nto the model. Therefore, it will waste much more samples to estimate the “non-effective” \nvariables in the inference. In this paper, we use a sequential procedure for \nconstructing the fixed size confidence set for the “effective” parameters to \nthe model by using an adaptive shrinkage estimate such that the “effective” \ncoefficients can be efficiently identified with the minimum sample size based \non Tobit regression model. Fixed design is considered for numerical simulation.","PeriodicalId":56990,"journal":{"name":"建模与仿真(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"建模与仿真(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ojmsi.2021.93018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the applications of Tobit regression models we always encounter the data sets which contain too many variables that only a few of them contribute to the model. Therefore, it will waste much more samples to estimate the “non-effective” variables in the inference. In this paper, we use a sequential procedure for constructing the fixed size confidence set for the “effective” parameters to the model by using an adaptive shrinkage estimate such that the “effective” coefficients can be efficiently identified with the minimum sample size based on Tobit regression model. Fixed design is considered for numerical simulation.
Tobit回归模型的序贯收缩估计方法
在Tobit回归模型的应用中,我们经常遇到包含太多变量的数据集,其中只有少数变量对模型有贡献。因此,它会浪费更多的样本来估计推理中的“无效”变量。在本文中,我们使用一个顺序过程,通过自适应收缩估计来构造模型的“有效”参数的固定大小的置信集,使得“有效”系数可以有效地识别出基于Tobit回归模型的最小样本量。数值模拟采用固定设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信