Solutions of complex nonlinear functional equations including second order partial differential and difference in C^2

IF 0.8 4区 数学 Q2 MATHEMATICS
H. Xu, Goutam Haldar
{"title":"Solutions of complex nonlinear functional equations including second order partial differential and difference in C^2","authors":"H. Xu, Goutam Haldar","doi":"10.58997/ejde.2023.43","DOIUrl":null,"url":null,"abstract":"This article is devoted to exploring the existence and the form of finite order transcendental entire solutions of Fermat-type second order partial differential-difference equations $$ \\Big(\\frac{\\partial^2 f}{\\partial z_1^2}+\\delta\\frac{\\partial^2 f}{\\partial z_2^2} +\\eta\\frac{\\partial^2 f}{\\partial z_1\\partial z_2}\\Big)^2 +f(z_1+c_1,z_2+c_2)^2=e^{g(z_1,z_2)} $$ and $$ \\Big(\\frac{\\partial^2 f}{\\partial z_1^2}+\\delta\\frac{\\partial^2 f}{\\partial z_2^2} +\\eta\\frac{\\partial^2 f}{\\partial z_1\\partial z_2}\\Big)^2+(f(z_1+c_1,z_2+c_2) -f(z_1,z_2))^2=e^{g(z)}, $$ where \\(\\delta,\\eta\\in\\mathbb{C}\\) and \\(g(z_1,z_2)\\) is a polynomial in \\(\\mathbb{C}^2\\). Our results improve the results of Liu and Dong [23] Liu et al. [24] and Liu and Yang [25] Several examples confirm that the form of tr","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.43","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article is devoted to exploring the existence and the form of finite order transcendental entire solutions of Fermat-type second order partial differential-difference equations $$ \Big(\frac{\partial^2 f}{\partial z_1^2}+\delta\frac{\partial^2 f}{\partial z_2^2} +\eta\frac{\partial^2 f}{\partial z_1\partial z_2}\Big)^2 +f(z_1+c_1,z_2+c_2)^2=e^{g(z_1,z_2)} $$ and $$ \Big(\frac{\partial^2 f}{\partial z_1^2}+\delta\frac{\partial^2 f}{\partial z_2^2} +\eta\frac{\partial^2 f}{\partial z_1\partial z_2}\Big)^2+(f(z_1+c_1,z_2+c_2) -f(z_1,z_2))^2=e^{g(z)}, $$ where \(\delta,\eta\in\mathbb{C}\) and \(g(z_1,z_2)\) is a polynomial in \(\mathbb{C}^2\). Our results improve the results of Liu and Dong [23] Liu et al. [24] and Liu and Yang [25] Several examples confirm that the form of tr
C^2中包含二阶偏微分和差分的复非线性函数方程的解
本文探讨了费马型二阶偏微分-差分方程$$ \Big(\frac{\partial^2 f}{\partial z_1^2}+\delta\frac{\partial^2 f}{\partial z_2^2} +\eta\frac{\partial^2 f}{\partial z_1\partial z_2}\Big)^2 +f(z_1+c_1,z_2+c_2)^2=e^{g(z_1,z_2)} $$和$$ \Big(\frac{\partial^2 f}{\partial z_1^2}+\delta\frac{\partial^2 f}{\partial z_2^2} +\eta\frac{\partial^2 f}{\partial z_1\partial z_2}\Big)^2+(f(z_1+c_1,z_2+c_2) -f(z_1,z_2))^2=e^{g(z)}, $$的有限阶超越全解的存在性和形式,其中\(\delta,\eta\in\mathbb{C}\)和\(g(z_1,z_2)\)是\(\mathbb{C}^2\)中的一个多项式。我们的结果改进了Liu and Dong [23] Liu et al.[24]和Liu and Yang[25]的结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信