Yu Zhang, Chengliang Zhang, Y. Hu, Long Chen, Wenrong Yang, Hai Dong Zhang
{"title":"Design And Experiment of Axial Air-Suction Drum Seed-Metering Device","authors":"Yu Zhang, Chengliang Zhang, Y. Hu, Long Chen, Wenrong Yang, Hai Dong Zhang","doi":"10.30560/as.v4n2p66","DOIUrl":null,"url":null,"abstract":"This study developed an axial air-suction drum seed-metering device without a special vacuum pump and associated pipeline facilities, greatly simplifying the structure of the air-suction drum seed-metering device, which aimed to solve the problems of complex structure and difficult maintenance of traditional air suction drum seed-metering device. The geometric model of the seed-metering device was established by SOLIDWORKS. In addition, numerical simulation tests were carried out on the seed-metering device based on CFD to verify the feasibility of the theoretical operation of the seed-metering device. The seed-metering device was processed and a test bench was built for physical testing, which verified the feasibility of the actual operation of the seed-metering device. The bench test results showed that when the fan speed reached 2100 rpm, the adsorption rate of the seed-metering device on tomato seeds, pepper seeds, and eggplant seeds reached more than 86.39%,87.22%, and 93.06%, respectively. Besides, when the fan speed reached 2400 rpm, the adsorption rate of the seed-metering device on tomato seeds, hot pepper seeds, and eggplant seeds all reached more than 95%, which demonstrated that the seed-metering device has good seed suction performance despite its straightforward design.","PeriodicalId":7435,"journal":{"name":"Agricultural Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30560/as.v4n2p66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study developed an axial air-suction drum seed-metering device without a special vacuum pump and associated pipeline facilities, greatly simplifying the structure of the air-suction drum seed-metering device, which aimed to solve the problems of complex structure and difficult maintenance of traditional air suction drum seed-metering device. The geometric model of the seed-metering device was established by SOLIDWORKS. In addition, numerical simulation tests were carried out on the seed-metering device based on CFD to verify the feasibility of the theoretical operation of the seed-metering device. The seed-metering device was processed and a test bench was built for physical testing, which verified the feasibility of the actual operation of the seed-metering device. The bench test results showed that when the fan speed reached 2100 rpm, the adsorption rate of the seed-metering device on tomato seeds, pepper seeds, and eggplant seeds reached more than 86.39%,87.22%, and 93.06%, respectively. Besides, when the fan speed reached 2400 rpm, the adsorption rate of the seed-metering device on tomato seeds, hot pepper seeds, and eggplant seeds all reached more than 95%, which demonstrated that the seed-metering device has good seed suction performance despite its straightforward design.