Lie subalgebras of so(3,1) up to conjugacy

Q2 Mathematics
R. Ghanam, G. Thompson, Narayana Bandara
{"title":"Lie subalgebras of so(3,1) up to conjugacy","authors":"R. Ghanam, G. Thompson, Narayana Bandara","doi":"10.1108/ajms-01-2022-0007","DOIUrl":null,"url":null,"abstract":"<jats:sec><jats:title content-type=\"abstract-subheading\">Purpose</jats:title><jats:p>This study aims to find all subalgebras up to conjugacy in the real simple Lie algebra <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mi mathvariant=\"fraktur\">s</m:mi><m:mi mathvariant=\"fraktur\">o</m:mi><m:mrow><m:mo>(</m:mo><m:mrow><m:mn>3,1</m:mn></m:mrow><m:mo>)</m:mo></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-01-2022-0007002.tif\" /></jats:inline-formula>.</jats:p></jats:sec><jats:sec><jats:title content-type=\"abstract-subheading\">Design/methodology/approach</jats:title><jats:p>The authors use Lie Algebra techniques to find all inequivalent subalgebras of <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mi mathvariant=\"fraktur\">s</m:mi><m:mi mathvariant=\"fraktur\">o</m:mi><m:mrow><m:mo>(</m:mo><m:mrow><m:mn>3,1</m:mn></m:mrow><m:mo>)</m:mo></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-01-2022-0007003.tif\" /></jats:inline-formula> in all dimensions.</jats:p></jats:sec><jats:sec><jats:title content-type=\"abstract-subheading\">Findings</jats:title><jats:p>The authors find all subalgebras up to conjugacy in the real simple Lie algebra <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mi mathvariant=\"fraktur\">s</m:mi><m:mi mathvariant=\"fraktur\">o</m:mi><m:mrow><m:mo>(</m:mo><m:mrow><m:mn>3,1</m:mn></m:mrow><m:mo>)</m:mo></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-01-2022-0007004.tif\" /></jats:inline-formula>.</jats:p></jats:sec><jats:sec><jats:title content-type=\"abstract-subheading\">Originality/value</jats:title><jats:p>This paper is an original research idea. It will be a main reference for many applications such as solving partial differential equations. If <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mi mathvariant=\"fraktur\">s</m:mi><m:mi mathvariant=\"fraktur\">o</m:mi><m:mrow><m:mo>(</m:mo><m:mrow><m:mn>3,1</m:mn></m:mrow><m:mo>)</m:mo></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-01-2022-0007005.tif\" /></jats:inline-formula> is part of the symmetry Lie algebra, then the subalgebras listed in this paper will be used to reduce the order of the partial differential equation (PDE) and produce non-equivalent solutions.</jats:p></jats:sec>","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ajms-01-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

PurposeThis study aims to find all subalgebras up to conjugacy in the real simple Lie algebra so(3,1).Design/methodology/approachThe authors use Lie Algebra techniques to find all inequivalent subalgebras of so(3,1) in all dimensions.FindingsThe authors find all subalgebras up to conjugacy in the real simple Lie algebra so(3,1).Originality/valueThis paper is an original research idea. It will be a main reference for many applications such as solving partial differential equations. If so(3,1) is part of the symmetry Lie algebra, then the subalgebras listed in this paper will be used to reduce the order of the partial differential equation (PDE) and produce non-equivalent solutions.
so(3,1)到共轭的李子代数
目的研究真实简单李代数so(3,1)中所有达到共轭的子代数。设计/方法/方法作者利用李代数技术在所有维度上求出so(3,1)的所有不等价子代数。发现在实简单李代数so(3,1)中发现了所有共轭的子代数。原创性/价值这篇论文是一个原创的研究思路。它将是求解偏微分方程等许多应用的主要参考。如果(3,1)是对称李代数的一部分,那么本文所列出的子代数将用于降低偏微分方程(PDE)的阶并产生非等价解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信