Kloosterman sums with twice-differentiable functions

Pub Date : 2019-02-15 DOI:10.7169/facm/1845
I. Shparlinski, Marc Technau
{"title":"Kloosterman sums with twice-differentiable functions","authors":"I. Shparlinski, Marc Technau","doi":"10.7169/facm/1845","DOIUrl":null,"url":null,"abstract":"We bound Kloosterman-like sums of the shape \\[ \\sum_{n=1}^N \\exp(2\\pi i (x \\lfloor f(n)\\rfloor+ y \\lfloor f(n)\\rfloor^{-1})/p), \\] with integers parts of a real-valued, twice-differentiable function $f$ is satisfying a certain limit condition on $f''$, and $\\lfloor f(n)\\rfloor^{-1}$ is meaning inversion modulo~$p$. As an immediate application, we obtain results concerning the distribution of modular inverses inverses $\\lfloor f(n)\\rfloor^{-1} \\pmod{p}$. The results apply, in particular, to Piatetski-Shapiro sequences $ \\lfloor t^c\\rfloor$ with $c\\in(1,\\frac{4}{3})$. The proof is an adaptation of an argument used by Banks and the first named author in a series of papers from 2006 to 2009.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We bound Kloosterman-like sums of the shape \[ \sum_{n=1}^N \exp(2\pi i (x \lfloor f(n)\rfloor+ y \lfloor f(n)\rfloor^{-1})/p), \] with integers parts of a real-valued, twice-differentiable function $f$ is satisfying a certain limit condition on $f''$, and $\lfloor f(n)\rfloor^{-1}$ is meaning inversion modulo~$p$. As an immediate application, we obtain results concerning the distribution of modular inverses inverses $\lfloor f(n)\rfloor^{-1} \pmod{p}$. The results apply, in particular, to Piatetski-Shapiro sequences $ \lfloor t^c\rfloor$ with $c\in(1,\frac{4}{3})$. The proof is an adaptation of an argument used by Banks and the first named author in a series of papers from 2006 to 2009.
分享
查看原文
二次可微函数的Kloosterman和
我们将形状\[\sum_{n=1}^n\exp(2\pi i(x\lfloor f(n)\rfloor+y\lfloor f(n)\ rfloor^{-1})/p),\]的类Klosterman和与实值的二次可微函数$f$的整数部分绑定,$f$满足$f''$上的某个极限条件,$\lfloor f'(n)\lfloor^{-1}$表示模~$p$的反转。作为一个直接的应用,我们得到了关于模逆逆$\lfloorf(n)\lfloor^{-1}\pmod{p}$的分布的结果。这些结果特别适用于Piatetski Shapiro序列$\lfloor t^c\lfloor$和$c\in(1,\frac{4}{3})$。该证据改编自班克斯和2006年至2009年一系列论文中第一位被点名的作者的论点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信