A Decision Procedure for Univariate Polynomial Systems Based on Root Counting and Interval Subdivision

C. Muñoz, Anthony Narkawicz, Aaron Dutle
{"title":"A Decision Procedure for Univariate Polynomial Systems Based on Root Counting and Interval Subdivision","authors":"C. Muñoz, Anthony Narkawicz, Aaron Dutle","doi":"10.6092/ISSN.1972-5787/8212","DOIUrl":null,"url":null,"abstract":"This paper presents a formally verified decision procedure for determinining the satisfiability of a system of univariate polynomial relations over the real line. The procedure combines a root counting function, based on Sturm's theorem, with an interval subdivision algorithm. Given a system of polynomial relations over the same variable, the decision procedure progressively subdivides the real interval into smaller intervals. The subdivision continues until the satisfiability of the system can be determined on each subinterval using Sturm's theorem on a subset of the system's polynomials. The decision procedure has been formally verified in the Prototype Verification System (PVS). In PVS, the decision procedure is specified as a computable boolean function on a deep embedding of polynomial relations. This function is used to define a proof producing strategy for automatically proving existential and universal statements on polynomial systems. The soundness of the strategy solely depends on the internal logic of PVS.","PeriodicalId":41454,"journal":{"name":"Journal of Formalized Reasoning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Formalized Reasoning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1972-5787/8212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents a formally verified decision procedure for determinining the satisfiability of a system of univariate polynomial relations over the real line. The procedure combines a root counting function, based on Sturm's theorem, with an interval subdivision algorithm. Given a system of polynomial relations over the same variable, the decision procedure progressively subdivides the real interval into smaller intervals. The subdivision continues until the satisfiability of the system can be determined on each subinterval using Sturm's theorem on a subset of the system's polynomials. The decision procedure has been formally verified in the Prototype Verification System (PVS). In PVS, the decision procedure is specified as a computable boolean function on a deep embedding of polynomial relations. This function is used to define a proof producing strategy for automatically proving existential and universal statements on polynomial systems. The soundness of the strategy solely depends on the internal logic of PVS.
基于根计数和区间细分的一元多项式系统决策过程
本文给出了一个形式验证的决策过程,用于确定实线上一元多项式关系系统的可满足性。该过程将基于Sturm定理的根计数函数与区间细分算法相结合。给定同一变量上的多项式关系系统,决策过程将实数区间逐步细分为更小的区间。细分继续进行,直到可以使用系统多项式子集上的Sturm定理在每个子区间上确定系统的可满足性。决策程序已在原型验证系统(PVS)中得到正式验证。在PVS中,决策过程被指定为多项式关系的深度嵌入上的可计算布尔函数。该函数用于定义一种证明生成策略,用于自动证明多项式系统上的存在性和普遍性语句。战略的合理性完全取决于PVS的内部逻辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信