Diffuson-mediated thermal and ionic transport in superionic conductors

Tim Bernges, R. Hanus, Bjöern Wankmiller, Kazuki Imasato, Siqi Lin, M. Ghidiu, Marius Gerlitz, M. Peterlechner, S. Graham, G. Hautier, Y. Pei, Michael Ryan Hansen, G. Wilde, G. J. Snyder, Janine George, M. Agne, W. Zeier
{"title":"Diffuson-mediated thermal and ionic transport in superionic conductors","authors":"Tim Bernges, R. Hanus, Bjöern Wankmiller, Kazuki Imasato, Siqi Lin, M. Ghidiu, Marius Gerlitz, M. Peterlechner, S. Graham, G. Hautier, Y. Pei, Michael Ryan Hansen, G. Wilde, G. J. Snyder, Janine George, M. Agne, W. Zeier","doi":"10.33774/chemrxiv-2021-3zxh4","DOIUrl":null,"url":null,"abstract":"Ultra-low lattice thermal conductivity as often found in superionic compounds is greatly beneficial for thermoelectric performance, however, a high ionic conductivity can lead to device degradation. Conversely, high ionic conductivities are searched for materials in solid-state battery applications. It is commonly thought that ionic transport induces low thermal conductivity and that ion and thermal transport are not completely independent properties of a material. However, no direct comparison or underlying physical relationship has been shown between the two. Here we establish that ionic transport can be varied independent of thermal transport in Ag+ superionic conductors, even though both phenomena arise from atomic vibrations. Thermal conductivity measurements, in conjunction with two-channel lattice dynamics modeling, reveals that the vast majority of Ag+ vibrations have non-propagating diffuson-like character, which provides a rational for how these two transport properties can be independent. Our results provide conceptually novel lattice dynamical insights to ionic transport and confirm that ion transport is not a requirement for ultra-low thermal conductivity. Consequently, this work bridges the fields of solid state ionics and thermal transport, thus providing design strategies for functional ionic conducting materials from a vibrational perspective.","PeriodicalId":72565,"journal":{"name":"ChemRxiv : the preprint server for chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv : the preprint server for chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-3zxh4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ultra-low lattice thermal conductivity as often found in superionic compounds is greatly beneficial for thermoelectric performance, however, a high ionic conductivity can lead to device degradation. Conversely, high ionic conductivities are searched for materials in solid-state battery applications. It is commonly thought that ionic transport induces low thermal conductivity and that ion and thermal transport are not completely independent properties of a material. However, no direct comparison or underlying physical relationship has been shown between the two. Here we establish that ionic transport can be varied independent of thermal transport in Ag+ superionic conductors, even though both phenomena arise from atomic vibrations. Thermal conductivity measurements, in conjunction with two-channel lattice dynamics modeling, reveals that the vast majority of Ag+ vibrations have non-propagating diffuson-like character, which provides a rational for how these two transport properties can be independent. Our results provide conceptually novel lattice dynamical insights to ionic transport and confirm that ion transport is not a requirement for ultra-low thermal conductivity. Consequently, this work bridges the fields of solid state ionics and thermal transport, thus providing design strategies for functional ionic conducting materials from a vibrational perspective.
超导导体中扩散介导的热和离子输运
超离子化合物中经常发现的超低晶格热导率对热电性能非常有益,然而,高离子电导率可能导致器件退化。相反,在固态电池应用中寻找高离子电导率的材料。通常认为离子输运会导致低导热性,并且离子和热输运不是材料的完全独立的性质。然而,两者之间没有直接的比较或潜在的物理关系。在这里,我们确定了Ag+超离子导体中的离子输运可以独立于热输运而变化,即使这两种现象都是由原子振动引起的。热导率测量,结合双通道晶格动力学建模,揭示了绝大多数Ag+振动具有非传播的类扩散子特性,这为这两种传输特性如何独立提供了合理的依据。我们的结果为离子输运提供了概念上新颖的晶格动力学见解,并证实离子输运不是超低热导率的要求。因此,这项工作跨越了固态离子学和热传输领域,从而从振动的角度为功能性离子导电材料提供了设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信