Prismatic $F$-crystals and crystalline Galois representations

IF 1.8 2区 数学 Q1 MATHEMATICS
B. Bhatt, P. Scholze
{"title":"Prismatic $F$-crystals and crystalline Galois representations","authors":"B. Bhatt, P. Scholze","doi":"10.4310/cjm.2023.v11.n2.a3","DOIUrl":null,"url":null,"abstract":"Let $K$ be a complete discretely valued field of mixed characteristic $(0,p)$ with perfect residue field. We prove that the category of prismatic $F$-crystals on $\\mathcal O_K$ is equivalent to the category of lattices in crystalline $G_K$-representations.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2023.v11.n2.a3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 27

Abstract

Let $K$ be a complete discretely valued field of mixed characteristic $(0,p)$ with perfect residue field. We prove that the category of prismatic $F$-crystals on $\mathcal O_K$ is equivalent to the category of lattices in crystalline $G_K$-representations.
棱镜$F$晶体和结晶伽罗瓦表示
设$K$是混合特征$(0,p)$具有完全残差域的完全离散值域。证明了$\数学O_K$上的棱镜$F$-晶体的范畴等价于$G_K$-晶体表示中的晶格范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信