Predicting Disease Activity for Biologic Selection in Rheumatoid Arthritis

M. Yamauchi, K. Nakano, Yoshiya Tanaka, K. Horio
{"title":"Predicting Disease Activity for Biologic Selection in Rheumatoid Arthritis","authors":"M. Yamauchi, K. Nakano, Yoshiya Tanaka, K. Horio","doi":"10.5121/csit.2020.101913","DOIUrl":null,"url":null,"abstract":"In this article, we implemented a regression model and conducted experiments for predicting disease activity using data from 1929 rheumatoid arthritis patients to assist in the selection of biologics for rheumatoid arthritis. On modelling, the missing variables in the data were completed by three different methods, mean value, self-organizing map and random value. Experimental results showed that the prediction error of the regression model was large regardless of the missing completion method, making it difficult to predict the prognosis of rheumatoid arthritis patients.","PeriodicalId":72673,"journal":{"name":"Computer science & information technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer science & information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2020.101913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we implemented a regression model and conducted experiments for predicting disease activity using data from 1929 rheumatoid arthritis patients to assist in the selection of biologics for rheumatoid arthritis. On modelling, the missing variables in the data were completed by three different methods, mean value, self-organizing map and random value. Experimental results showed that the prediction error of the regression model was large regardless of the missing completion method, making it difficult to predict the prognosis of rheumatoid arthritis patients.
类风湿关节炎疾病活动性的生物选择预测
在这篇文章中,我们使用1929年类风湿性关节炎患者的数据实施了一个回归模型并进行了预测疾病活动性的实验,以帮助选择治疗类风湿性关节炎的生物制剂。在建模方面,采用均值、自组织映射和随机值三种不同的方法对数据中的缺失变量进行补全。实验结果表明,无论采用何种缺失补全方法,回归模型的预测误差都较大,难以预测类风湿关节炎患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信