Joint discrete and continuous matrix distribution modeling

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Martin Bladt, Clara Brimnes Gardner
{"title":"Joint discrete and continuous matrix distribution modeling","authors":"Martin Bladt, Clara Brimnes Gardner","doi":"10.1080/15326349.2023.2185257","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a bivariate distribution on $\\mathbb{R}_{+} \\times \\mathbb{N}$ arising from a single underlying Markov jump process. The marginal distributions are phase-type and discrete phase-type distributed, respectively, which allow for flexible behavior for modeling purposes. We show that the distribution is dense in the class of distributions on $\\mathbb{R}_{+} \\times \\mathbb{N}$ and derive some of its main properties, all explicit in terms of matrix calculus. Furthermore, we develop an effective EM algorithm for the statistical estimation of the distribution parameters. In the last part of the paper, we apply our methodology to an insurance dataset, where we model the number of claims and the mean claim sizes of policyholders, which is seen to perform favorably. An additional consequence of the latter analysis is that the total loss size in the entire portfolio is captured substantially better than with independent phase-type models.","PeriodicalId":21970,"journal":{"name":"Stochastic Models","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2023.2185257","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we introduce a bivariate distribution on $\mathbb{R}_{+} \times \mathbb{N}$ arising from a single underlying Markov jump process. The marginal distributions are phase-type and discrete phase-type distributed, respectively, which allow for flexible behavior for modeling purposes. We show that the distribution is dense in the class of distributions on $\mathbb{R}_{+} \times \mathbb{N}$ and derive some of its main properties, all explicit in terms of matrix calculus. Furthermore, we develop an effective EM algorithm for the statistical estimation of the distribution parameters. In the last part of the paper, we apply our methodology to an insurance dataset, where we model the number of claims and the mean claim sizes of policyholders, which is seen to perform favorably. An additional consequence of the latter analysis is that the total loss size in the entire portfolio is captured substantially better than with independent phase-type models.
联合离散和连续矩阵分布建模
在本文中,我们引入了$\mathbb上的一个二元分布{R}_{+}\times\mathbb{N}$由单个底层马尔可夫跳跃过程产生。边际分布分别是相位型和离散相位型分布,这允许用于建模目的的灵活行为。我们证明了$\mathbb上的分布类中的分布是稠密的{R}_{+}\times\mathbb{N}$,并导出了它的一些主要性质,所有这些性质都是用矩阵演算表示的。此外,我们还开发了一种有效的EM算法来统计估计分布参数。在论文的最后一部分,我们将我们的方法应用于一个保险数据集,在那里我们对投保人的索赔数量和平均索赔规模进行了建模,这被认为是有利的。后一种分析的另一个结果是,与独立阶段型模型相比,整个投资组合中的总损失规模得到了更好的捕捉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Models
Stochastic Models 数学-统计学与概率论
CiteScore
1.30
自引率
14.30%
发文量
42
审稿时长
>12 weeks
期刊介绍: Stochastic Models publishes papers discussing the theory and applications of probability as they arise in the modeling of phenomena in the natural sciences, social sciences and technology. It presents novel contributions to mathematical theory, using structural, analytical, algorithmic or experimental approaches. In an interdisciplinary context, it discusses practical applications of stochastic models to diverse areas such as biology, computer science, telecommunications modeling, inventories and dams, reliability, storage, queueing theory, mathematical finance and operations research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信