A Statistical and Computational Predictive Model of the Direct Fuel Injection System in Diesel Engines

Q1 Mathematics
Carlos Pardo García, J. Pabón, Marlen Fonseca Vigoya
{"title":"A Statistical and Computational Predictive Model of the Direct Fuel Injection System in Diesel Engines","authors":"Carlos Pardo García, J. Pabón, Marlen Fonseca Vigoya","doi":"10.15866/iremos.v14i3.19063","DOIUrl":null,"url":null,"abstract":"In recent years, the high emission standards have grown the development of different strategies focused on the reduction of pollutants produced by combustion processes in energy transfer systems. For that reason, different studies have been developed to minimize fuel consumption and elevate internal combustion performance under different operating modes. Internal combustion engines are widely studied currently by means of advanced theories of thermal and fluid mechanics sciences with the aim to improve the energy transfer processes needed to transform the chemical energy generated in work during the complex fuel combustion process into the combustion chamber. Inexpensive methods have been developed to improve the internal combustion engine performance based on the understanding of chemical reactions and physical processes of mass and energy transfer.  Mathematical and experimental models are employed to approximate the real working conditions, the physical phenomenon of the fuel flow injected into the combustion chamber of the internal combustion engine. Therefore, this paper proposes a predictive model that relates the fuel injection system with the combustion process and the heat transfer into the walls of the combustion chamber. External forces are considered during the internal combustion engine operation under real working conditions taking into account the dependent variables of the partial differential equations system that describes the internal combustion engine performance. A good agreement was reached between the experimental and predictive approaches. The results showed an error rate of less than 3 percent, considering a multiple linear regression model adjusted to the characterized internal combustion engine.","PeriodicalId":38950,"journal":{"name":"International Review on Modelling and Simulations","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review on Modelling and Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/iremos.v14i3.19063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the high emission standards have grown the development of different strategies focused on the reduction of pollutants produced by combustion processes in energy transfer systems. For that reason, different studies have been developed to minimize fuel consumption and elevate internal combustion performance under different operating modes. Internal combustion engines are widely studied currently by means of advanced theories of thermal and fluid mechanics sciences with the aim to improve the energy transfer processes needed to transform the chemical energy generated in work during the complex fuel combustion process into the combustion chamber. Inexpensive methods have been developed to improve the internal combustion engine performance based on the understanding of chemical reactions and physical processes of mass and energy transfer.  Mathematical and experimental models are employed to approximate the real working conditions, the physical phenomenon of the fuel flow injected into the combustion chamber of the internal combustion engine. Therefore, this paper proposes a predictive model that relates the fuel injection system with the combustion process and the heat transfer into the walls of the combustion chamber. External forces are considered during the internal combustion engine operation under real working conditions taking into account the dependent variables of the partial differential equations system that describes the internal combustion engine performance. A good agreement was reached between the experimental and predictive approaches. The results showed an error rate of less than 3 percent, considering a multiple linear regression model adjusted to the characterized internal combustion engine.
柴油机直接燃油喷射系统的统计和计算预测模型
近年来,随着高排放标准的发展,人们制定了不同的策略,重点是减少能源输送系统中燃烧过程产生的污染物。因此,为了在不同的运行模式下最大限度地减少燃料消耗并提高内燃性能,已经进行了不同的研究。内燃机目前通过热和流体力学科学的先进理论进行了广泛的研究,目的是改进将复杂燃料燃烧过程中产生的化学能转化为燃烧室所需的能量传递过程。基于对质量和能量传递的化学反应和物理过程的理解,已经开发出了廉价的方法来改善内燃机的性能。采用数学和实验模型来近似真实的工作条件,即喷射到内燃机燃烧室中的燃料流的物理现象。因此,本文提出了一个预测模型,该模型将燃料喷射系统与燃烧过程和进入燃烧室壁的热传递联系起来。考虑描述内燃机性能的偏微分方程系统的因变量,在内燃机实际工作条件下运行期间考虑外力。实验方法和预测方法之间达成了良好的一致性。考虑到根据内燃机特性调整的多元线性回归模型,结果显示误差率小于3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Review on Modelling and Simulations
International Review on Modelling and Simulations Engineering-Mechanical Engineering
CiteScore
2.80
自引率
0.00%
发文量
23
期刊介绍: The International Review on Modelling and Simulations (IREMOS) is a peer-reviewed journal that publishes original theoretical and applied papers concerning Modelling, Numerical studies, Algorithms and Simulations in all the engineering fields. The topics to be covered include, but are not limited to: theoretical aspects of modelling and simulation, methods and algorithms for design control and validation of systems, tools for high performance computing simulation. The applied papers can deal with Modelling, Numerical studies, Algorithms and Simulations regarding all the engineering fields; particularly about the electrical engineering (power system, power electronics, automotive applications, power devices, energy conversion, electrical machines, lighting systems and so on), the mechanical engineering (kinematics and dynamics of rigid bodies, vehicle system dynamics, theory of machines and mechanisms, vibration and balancing of machine parts, stability of mechanical systems, computational mechanics, mechanics of materials and structures, plasticity, hydromechanics, aerodynamics, aeroelasticity, biomechanics, geomechanics, thermodynamics, heat transfer, refrigeration, fluid mechanics, micromechanics, nanomechanics, robotics, mechatronics, combustion theory, turbomachinery, manufacturing processes and so on), the chemical engineering (chemical reaction engineering, environmental chemical engineering, materials synthesis and processing and so on). IREMOS also publishes letters to the Editor and research notes which discuss new research, or research in progress in any of the above thematic areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信