Whole proteome mapping of compound-protein interactions

Venkat R. Chirasani , Jian Wang , Congzhou Sha , Wesley Raup-Konsavage , Kent Vrana , Nikolay V. Dokholyan
{"title":"Whole proteome mapping of compound-protein interactions","authors":"Venkat R. Chirasani ,&nbsp;Jian Wang ,&nbsp;Congzhou Sha ,&nbsp;Wesley Raup-Konsavage ,&nbsp;Kent Vrana ,&nbsp;Nikolay V. Dokholyan","doi":"10.1016/j.crchbi.2022.100035","DOIUrl":null,"url":null,"abstract":"<div><p>Off-target binding is one of the primary causes of toxic side effects of drugs in clinical development, resulting in failures of clinical trials. While off-target drug binding is a known phenomenon, experimental identification of the undesired protein binders can be prohibitively expensive due to the large pool of possible biological targets. Here, we propose a new strategy combining chemical similarity principle and deep learning to enable proteome-wide mapping of compound-protein interactions. We have developed a pipeline to identify the targets of bioactive molecules by matching them with chemically similar annotated “bait” compounds and ranking them with deep learning. We have constructed a user-friendly web server for <u>dr</u>ug-target <u>i</u>denti<u>f</u>icat<u>i</u>on based on chemical similarity (DRIFT) to perform searches across annotated bioactive compound datasets, thus enabling high-throughput, multi-ligand target identification, as well as chemical fragmentation of target-binding moieties.</p></div>","PeriodicalId":72747,"journal":{"name":"Current research in chemical biology","volume":"2 ","pages":"Article 100035"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666246922000179/pdfft?md5=b91a692c61827ecd8034280ad34ca99e&pid=1-s2.0-S2666246922000179-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current research in chemical biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666246922000179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Off-target binding is one of the primary causes of toxic side effects of drugs in clinical development, resulting in failures of clinical trials. While off-target drug binding is a known phenomenon, experimental identification of the undesired protein binders can be prohibitively expensive due to the large pool of possible biological targets. Here, we propose a new strategy combining chemical similarity principle and deep learning to enable proteome-wide mapping of compound-protein interactions. We have developed a pipeline to identify the targets of bioactive molecules by matching them with chemically similar annotated “bait” compounds and ranking them with deep learning. We have constructed a user-friendly web server for drug-target identification based on chemical similarity (DRIFT) to perform searches across annotated bioactive compound datasets, thus enabling high-throughput, multi-ligand target identification, as well as chemical fragmentation of target-binding moieties.

化合物-蛋白质相互作用的全蛋白质组图谱
脱靶结合是临床开发中产生药物毒副作用的主要原因之一,导致临床试验失败。虽然脱靶药物结合是一种已知的现象,但由于可能的生物靶点众多,对不需要的蛋白质结合物的实验鉴定可能非常昂贵。在这里,我们提出了一种结合化学相似性原理和深度学习的新策略,以实现化合物-蛋白质相互作用的蛋白质组范围定位。我们已经开发了一个管道来识别生物活性分子的目标,通过将它们与化学上相似的注释“诱饵”化合物进行匹配,并通过深度学习对它们进行排序。我们基于化学相似性(DRIFT)构建了一个用户友好的药物靶标识别web服务器,用于跨带注释的生物活性化合物数据集进行搜索,从而实现高通量、多配体靶标识别,以及靶标结合部分的化学碎片化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current research in chemical biology
Current research in chemical biology Biochemistry, Genetics and Molecular Biology (General)
自引率
0.00%
发文量
0
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信