Rokhsaneh Yousef Zehi, Noor Saifurina Nana Khurizan
{"title":"A robust DEA model in the presence of uncertain integer-valued parameters","authors":"Rokhsaneh Yousef Zehi, Noor Saifurina Nana Khurizan","doi":"10.1108/jm2-05-2022-0126","DOIUrl":null,"url":null,"abstract":"\nPurpose\nUncertainty in data, whether in real-valued or integer-valued data, may result in infeasible optimal solutions or unreliable efficiency scores and ranking of decision-making units. To handle the uncertainty in integer-valued factors in data envelopment analysis (DEA) models, this study aims to propose a robust DEA model which is applicable in the presence of such factors.\n\n\nDesign/methodology/approach\nThis research focuses on the application of fuzzy interpretation of efficiency to a mixed-integer DEA (MIDEA) model. The robust optimization approach is used to address the uncertain integer-valued parameters in the proposed MIDEA model.\n\n\nFindings\nIn this study, the authors proposed an MIDEA model without any equality constraint to avoid the arise problem by such constraints in the construction of the robust counterpart of the conventional MIDEA models. We have studied the characteristics and conditions for constructing the uncertainty set with uncertain integer-valued parameters and a robust MIDEA model is proposed under a combined box-polyhedral uncertainty set. The applicability of the developed models is shown in a case study of Malaysian public universities.\n\n\nOriginality/value\nThis study develops an MIDEA model equivalent to the conventional MIDEA model excluding any equality constraint which is crucial in robust approach to avoid restricted feasible region or infeasible solutions. This study proposes a robust DEA approach which is applicable in cases with uncertain integer-valued parameters, unlike previous studies in robust DEA field where uncertain parameters are generally assumed to be only real-valued.\n","PeriodicalId":16349,"journal":{"name":"Journal of Modelling in Management","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modelling in Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jm2-05-2022-0126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Uncertainty in data, whether in real-valued or integer-valued data, may result in infeasible optimal solutions or unreliable efficiency scores and ranking of decision-making units. To handle the uncertainty in integer-valued factors in data envelopment analysis (DEA) models, this study aims to propose a robust DEA model which is applicable in the presence of such factors.
Design/methodology/approach
This research focuses on the application of fuzzy interpretation of efficiency to a mixed-integer DEA (MIDEA) model. The robust optimization approach is used to address the uncertain integer-valued parameters in the proposed MIDEA model.
Findings
In this study, the authors proposed an MIDEA model without any equality constraint to avoid the arise problem by such constraints in the construction of the robust counterpart of the conventional MIDEA models. We have studied the characteristics and conditions for constructing the uncertainty set with uncertain integer-valued parameters and a robust MIDEA model is proposed under a combined box-polyhedral uncertainty set. The applicability of the developed models is shown in a case study of Malaysian public universities.
Originality/value
This study develops an MIDEA model equivalent to the conventional MIDEA model excluding any equality constraint which is crucial in robust approach to avoid restricted feasible region or infeasible solutions. This study proposes a robust DEA approach which is applicable in cases with uncertain integer-valued parameters, unlike previous studies in robust DEA field where uncertain parameters are generally assumed to be only real-valued.
期刊介绍:
Journal of Modelling in Management (JM2) provides a forum for academics and researchers with a strong interest in business and management modelling. The journal analyses the conceptual antecedents and theoretical underpinnings leading to research modelling processes which derive useful consequences in terms of management science, business and management implementation and applications. JM2 is focused on the utilization of management data, which is amenable to research modelling processes, and welcomes academic papers that not only encompass the whole research process (from conceptualization to managerial implications) but also make explicit the individual links between ''antecedents and modelling'' (how to tackle certain problems) and ''modelling and consequences'' (how to apply the models and draw appropriate conclusions). The journal is particularly interested in innovative methodological and statistical modelling processes and those models that result in clear and justified managerial decisions. JM2 specifically promotes and supports research writing, that engages in an academically rigorous manner, in areas related to research modelling such as: A priori theorizing conceptual models, Artificial intelligence, machine learning, Association rule mining, clustering, feature selection, Business analytics: Descriptive, Predictive, and Prescriptive Analytics, Causal analytics: structural equation modeling, partial least squares modeling, Computable general equilibrium models, Computer-based models, Data mining, data analytics with big data, Decision support systems and business intelligence, Econometric models, Fuzzy logic modeling, Generalized linear models, Multi-attribute decision-making models, Non-linear models, Optimization, Simulation models, Statistical decision models, Statistical inference making and probabilistic modeling, Text mining, web mining, and visual analytics, Uncertainty-based reasoning models.