{"title":"On a global supersonic-sonic patch characterized by 2-D steady full Euler equations","authors":"Yan-bo Hu, Jiequan Li","doi":"10.57262/ade/1589594418","DOIUrl":null,"url":null,"abstract":"Supersonic-sonic patches are ubiquitous in regions of transonic flows and they boil down to a family of degenerate hyperbolic problems in regions surrounded by a streamline, a characteristic curve and a possible sonic curve. This paper establishes the global existence of solutions in a whole supersonic-sonic patch characterized by the two-dimensional full system of steady Euler equations and studies solution behaviors near sonic curves, depending on the proper choice of boundary data extracted from the airfoil problem and related contexts. New characteristic decompositions are developed for the full system and a delicate local partial hodograph transformation is introduced for the solution estimates. It is shown that the solution is uniformly $C^{1,\\frac{1}{6}}$ continuous up to the sonic curve and the sonic curve is also $C^{1,\\frac{1}{6}}$ continuous.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade/1589594418","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13
Abstract
Supersonic-sonic patches are ubiquitous in regions of transonic flows and they boil down to a family of degenerate hyperbolic problems in regions surrounded by a streamline, a characteristic curve and a possible sonic curve. This paper establishes the global existence of solutions in a whole supersonic-sonic patch characterized by the two-dimensional full system of steady Euler equations and studies solution behaviors near sonic curves, depending on the proper choice of boundary data extracted from the airfoil problem and related contexts. New characteristic decompositions are developed for the full system and a delicate local partial hodograph transformation is introduced for the solution estimates. It is shown that the solution is uniformly $C^{1,\frac{1}{6}}$ continuous up to the sonic curve and the sonic curve is also $C^{1,\frac{1}{6}}$ continuous.
期刊介绍:
Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.