The Influence of Slope Geometry on its Stability: Spatial and Plane Analysis

Q4 Environmental Science
L. Zabuski
{"title":"The Influence of Slope Geometry on its Stability: Spatial and Plane Analysis","authors":"L. Zabuski","doi":"10.1515/heem-2018-0015","DOIUrl":null,"url":null,"abstract":"Abstract The paper presents the results of numerical calculations of the stability and deformation process of several idealized slopes performed by the elasto-plastic finite difference method, using the commercial codes FLAC3D and FLAC2D. The results of 3D analysis of these slopes are compared with those obtained by the 2D method. The behaviour of slopes of different shapes and inclinations was analyzed. The calculations were carried out for flat, concave and convex slopes inclined at 30°, 45° and 60°, taking into account the influence of the lateral constraints of the slope. Two variants of the medium were analysed, i.e. the mass with no friction and with no cohesion. A comparison of 3D calculation results with those obtained by the 2D limit equilibrium analysis indicates that the 3D approach produces almost always higher safety factors than does the 2D method.","PeriodicalId":53658,"journal":{"name":"Archives of Hydroengineering and Environmental Mechanics","volume":"65 1","pages":"243 - 254"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Hydroengineering and Environmental Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/heem-2018-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract The paper presents the results of numerical calculations of the stability and deformation process of several idealized slopes performed by the elasto-plastic finite difference method, using the commercial codes FLAC3D and FLAC2D. The results of 3D analysis of these slopes are compared with those obtained by the 2D method. The behaviour of slopes of different shapes and inclinations was analyzed. The calculations were carried out for flat, concave and convex slopes inclined at 30°, 45° and 60°, taking into account the influence of the lateral constraints of the slope. Two variants of the medium were analysed, i.e. the mass with no friction and with no cohesion. A comparison of 3D calculation results with those obtained by the 2D limit equilibrium analysis indicates that the 3D approach produces almost always higher safety factors than does the 2D method.
边坡几何形状对其稳定性的影响:空间和平面分析
摘要本文采用FLAC3D和FLAC2D商用程序,用弹塑性有限差分法对几种理想边坡的稳定性和变形过程进行了数值计算。对这些边坡的三维分析结果与二维分析结果进行了比较。分析了不同形状和倾斜度边坡的受力特性。考虑到边坡侧向约束的影响,对倾斜为30°、45°和60°的平坦、凹和凸边坡进行了计算。分析了介质的两种变体,即无摩擦和无黏聚的质量。三维计算结果与二维极限平衡分析结果的比较表明,三维方法几乎总是比二维方法产生更高的安全系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Hydroengineering and Environmental Mechanics
Archives of Hydroengineering and Environmental Mechanics Environmental Science-Water Science and Technology
CiteScore
1.30
自引率
0.00%
发文量
4
期刊介绍: Archives of Hydro-Engineering and Environmental Mechanics cover the broad area of disciplines related to hydro-engineering, including: hydrodynamics and hydraulics of inlands and sea waters, hydrology, hydroelasticity, ground-water hydraulics, water contamination, coastal engineering, geotechnical engineering, geomechanics, structural mechanics, etc. The main objective of Archives of Hydro-Engineering and Environmental Mechanics is to provide an up-to-date reference to the engineers and scientists engaged in the applications of mechanics to the analysis of various phenomena appearing in the natural environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信