ON \(A^{\mathcal{I^{K}}}\)–SUMMABILITY

Q3 Mathematics
C. Choudhury, S. Debnath
{"title":"ON \\(A^{\\mathcal{I^{K}}}\\)–SUMMABILITY","authors":"C. Choudhury, S. Debnath","doi":"10.15826/umj.2022.1.002","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce and investigate the concept of \\(A^{\\mathcal{I^{K}}}\\)-summability as an extension of \\(A^{\\mathcal{I^{*}}}\\)-summability which was recently (2021) introduced by O.H.H.~Edely, where \\(A=(a_{nk})_{n,k=1}^{\\infty}\\) is a non-negative regular matrix and \\(\\mathcal{I}\\) and \\(\\mathcal{K}\\) represent two non-trivial admissible ideals in \\(\\mathbb{N}\\). We study some of its fundamental properties as well as a few inclusion relationships with some other known summability methods. We prove that \\(A^{\\mathcal{K}}\\)-summability always implies \\(A^{\\mathcal{I^{K}}}\\)-summability whereas \\(A^{\\mathcal{I}}\\)-summability not necessarily implies \\(A^{\\mathcal{I^{K}}}\\)-summability. Finally, we give a condition namely \\(AP(\\mathcal{I},\\mathcal{K})\\) (which is a natural generalization of the condition \\(AP\\)) under which \\(A^{\\mathcal{I}}\\)-summability implies \\(A^{\\mathcal{I^{K}}}\\)-summability.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2022.1.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce and investigate the concept of \(A^{\mathcal{I^{K}}}\)-summability as an extension of \(A^{\mathcal{I^{*}}}\)-summability which was recently (2021) introduced by O.H.H.~Edely, where \(A=(a_{nk})_{n,k=1}^{\infty}\) is a non-negative regular matrix and \(\mathcal{I}\) and \(\mathcal{K}\) represent two non-trivial admissible ideals in \(\mathbb{N}\). We study some of its fundamental properties as well as a few inclusion relationships with some other known summability methods. We prove that \(A^{\mathcal{K}}\)-summability always implies \(A^{\mathcal{I^{K}}}\)-summability whereas \(A^{\mathcal{I}}\)-summability not necessarily implies \(A^{\mathcal{I^{K}}}\)-summability. Finally, we give a condition namely \(AP(\mathcal{I},\mathcal{K})\) (which is a natural generalization of the condition \(AP\)) under which \(A^{\mathcal{I}}\)-summability implies \(A^{\mathcal{I^{K}}}\)-summability.
关于\(A^{\mathcal{I^{K}})-可求性
在本文中,我们引入并研究了\(A^{\mathcal{I^{K}})-可和性的概念,该概念是O.H.~Edely最近(2021)引入的\(A^{\mathcal{I^{*}})-可加性的扩展,其中\(A=(A_{nk})_{n,K=1}^{infty})是一个非负正则矩阵,\(\mathical{I})和\(\math cal{K)表示\(\machbb{n})中的两个非平凡可容许理想。我们研究了它的一些基本性质,以及与其他一些已知的可和性方法的一些包含关系。我们证明了\(A^{\mathcal{K}})-可和性总是意味着\(A^{\mathcal{I^{K}})-可求和性,而\(A^2{\math cal{I}}\)-可加性不一定意味着\。最后,我们给出了一个条件,即\(AP(\mathcal{I},\mathcal{K})\)(这是条件\(AP\)的自然推广),在该条件下\(a^{\mathical{I{}})-可和性意味着\(a^{\mathcal}I^{K}}\)-可加性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信