Square functions, nontangential limits, and harmonic measure in codimension larger than 1

IF 2.3 1区 数学 Q1 MATHEMATICS
G. David, Max Engelstein, S. Mayboroda
{"title":"Square functions, nontangential limits, and harmonic measure in codimension larger than 1","authors":"G. David, Max Engelstein, S. Mayboroda","doi":"10.1215/00127094-2020-0048","DOIUrl":null,"url":null,"abstract":"We characterize the rectifiability (both uniform and not) of an Ahlfors regular set E of arbitrary codimension by the behavior of a regularized distance function in the complement of that set. In particular, we establish a certain version of the Riesz transform characterization of rectifiability for lower-dimensional sets. We also uncover a special situation in which the regularized distance is itself a solution to a degenerate elliptic operator in the complement of E. This allows us to precisely compute the harmonic measure of those sets associated to this degenerate operator and prove that, in sharp contrast with the usual setting of codimension 1, a converse to Dahlberg’s theorem must be false on lower-dimensional boundaries without additional assumptions.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":"170 1","pages":"455-501"},"PeriodicalIF":2.3000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2020-0048","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

Abstract

We characterize the rectifiability (both uniform and not) of an Ahlfors regular set E of arbitrary codimension by the behavior of a regularized distance function in the complement of that set. In particular, we establish a certain version of the Riesz transform characterization of rectifiability for lower-dimensional sets. We also uncover a special situation in which the regularized distance is itself a solution to a degenerate elliptic operator in the complement of E. This allows us to precisely compute the harmonic measure of those sets associated to this degenerate operator and prove that, in sharp contrast with the usual setting of codimension 1, a converse to Dahlberg’s theorem must be false on lower-dimensional boundaries without additional assumptions.
平方函数,非切极限,余维大于1的调和测度
我们通过在任意余维的Ahlfors正则集E的补上的正则距离函数的行为来表征该集E的一致和非一致的可纠偏性。特别地,我们建立了低维集可纠偏性的Riesz变换的一个特定版本。我们还发现了一种特殊情况,在这种情况下,正则化距离本身是e的补的简并椭圆算子的解。这使我们能够精确地计算与这个简并算子相关的那些集合的调和测度,并证明,与通常的余维数为1的情况形成强烈对比,在没有额外假设的情况下,在低维边界上Dahlberg定理的逆一定是假的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信