An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression

IF 1 Q3 STATISTICS & PROBABILITY
C. Hounmenou, K. Gneyou, R. G. Glèlè Kakaï
{"title":"An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression","authors":"C. Hounmenou, K. Gneyou, R. G. Glèlè Kakaï","doi":"10.1155/2020/9187503","DOIUrl":null,"url":null,"abstract":"Multivariate noises in the learning process are most of the time supposed to follow a standard multivariate normal distribution. This hypothesis does not often hold in many real-world situations. In this paper, we consider an approach based on multivariate skew-normal distribution. It allows for a multiple continuous variation from normality to nonnormality. We give an extension of the generalized least squares error function in a context of multivariate nonlinear regression to learn imprecise data. The simulation study and application case on real datasets conducted and based on multilayer perceptron neural networks (MLP) with bivariate continuous response and asymmetric revealed a significant gain in precision using the new quadratic error function for these types of data rather than using a classical generalized least squares error function having any covariance matrix.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":"1-9"},"PeriodicalIF":1.0000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/9187503","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/9187503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Multivariate noises in the learning process are most of the time supposed to follow a standard multivariate normal distribution. This hypothesis does not often hold in many real-world situations. In this paper, we consider an approach based on multivariate skew-normal distribution. It allows for a multiple continuous variation from normality to nonnormality. We give an extension of the generalized least squares error function in a context of multivariate nonlinear regression to learn imprecise data. The simulation study and application case on real datasets conducted and based on multilayer perceptron neural networks (MLP) with bivariate continuous response and asymmetric revealed a significant gain in precision using the new quadratic error function for these types of data rather than using a classical generalized least squares error function having any covariance matrix.
多元非线性回归中学习不精确数据的二次误差函数的推广
学习过程中的多变量噪声通常遵循标准的多变量正态分布。这个假设在许多现实世界的情况下并不经常成立。本文考虑了一种基于多元偏正态分布的方法。它允许从正态到非正态的多次连续变化。本文给出了广义最小二乘误差函数在多元非线性回归中的推广,用于学习不精确数据。基于二元连续响应和非对称的多层感知器神经网络(MLP)在实际数据集上的仿真研究和应用实例表明,对于这些类型的数据,使用新的二次误差函数比使用具有任何协方差矩阵的经典广义最小二乘误差函数具有显著的精度提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信