Factorization of a Spectral Density with Smooth Eigenvalues of a Multidimensional Stationary Time Series

IF 1.1 Q3 ECONOMICS
T. Szabados
{"title":"Factorization of a Spectral Density with Smooth Eigenvalues of a Multidimensional Stationary Time Series","authors":"T. Szabados","doi":"10.3390/econometrics11020014","DOIUrl":null,"url":null,"abstract":"The aim of this paper to give a multidimensional version of the classical one-dimensional case of smooth spectral density. A spectral density with smooth eigenvalues and H∞ eigenvectors gives an explicit method to factorize the spectral density and compute the Wold representation of a weakly stationary time series. A formula, similar to the Kolmogorov–Szego formula, is given for the covariance matrix of the innovations. These results are important to give the best linear predictions of the time series. The results are applicable when the rank of the process is smaller than the dimension of the process, which occurs frequently in many current applications, including econometrics.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics11020014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper to give a multidimensional version of the classical one-dimensional case of smooth spectral density. A spectral density with smooth eigenvalues and H∞ eigenvectors gives an explicit method to factorize the spectral density and compute the Wold representation of a weakly stationary time series. A formula, similar to the Kolmogorov–Szego formula, is given for the covariance matrix of the innovations. These results are important to give the best linear predictions of the time series. The results are applicable when the rank of the process is smaller than the dimension of the process, which occurs frequently in many current applications, including econometrics.
多维平稳时间序列具有光滑特征值的谱密度的因子分解
本文的目的是给出光滑谱密度的经典一维情况的多维版本。具有光滑特征值和H∞特征向量的谱密度给出了一种显式方法来分解谱密度并计算弱平稳时间序列的Wold表示。对于创新的协方差矩阵,给出了一个类似于Kolmogorov–Szego公式的公式。这些结果对于给出时间序列的最佳线性预测是重要的。当过程的秩小于过程的维数时,该结果是适用的,这在当前的许多应用中经常发生,包括计量经济学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信