Muhammad Halim, Muslihah Wook, N. Hasbullah, N. Razali, H. Hamid
{"title":"Comparative Assessment of Data Mining Techniques for Flash Flood Prediction","authors":"Muhammad Halim, Muslihah Wook, N. Hasbullah, N. Razali, H. Hamid","doi":"10.15849/ijasca.220328.09","DOIUrl":null,"url":null,"abstract":"Abstract Data mining techniques have recently drawn considerable attention from the research community for their ability to predict flash flood phenomena. These techniques can bring large-scale flood data into real practice and have become the necessary tools for impact assessment, societal resilience, and disaster control. Although numerous studies have been conducted on data mining techniques and flash flood predictions, domain-specific flash flood prediction models based on existing data mining techniques are still lacking. Notably, this study has focused on the performance of four data mining techniques, namely, logistic regression (LR), artificial neural networks (ANN), k-nearest neighbour (kNN), and support vector machine (SVM) in a comparative assessment as prediction models. The area under the curve (AUC) was utilised to validate these models. The value of AUC was higher than 0.9 for all models. Accordingly, the outcomes outlined in this study can contribute to Halim et al. the current literature by boosting the performance of data mining techniques for predicting flash floods through a comparison of the most recent data mining techniques. Keywords: Artificial neural networks (ANN), Flash flood, k-nearest neighbor (kNN), Logistic regression (LR), Support vector machine (SVM)","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.220328.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Data mining techniques have recently drawn considerable attention from the research community for their ability to predict flash flood phenomena. These techniques can bring large-scale flood data into real practice and have become the necessary tools for impact assessment, societal resilience, and disaster control. Although numerous studies have been conducted on data mining techniques and flash flood predictions, domain-specific flash flood prediction models based on existing data mining techniques are still lacking. Notably, this study has focused on the performance of four data mining techniques, namely, logistic regression (LR), artificial neural networks (ANN), k-nearest neighbour (kNN), and support vector machine (SVM) in a comparative assessment as prediction models. The area under the curve (AUC) was utilised to validate these models. The value of AUC was higher than 0.9 for all models. Accordingly, the outcomes outlined in this study can contribute to Halim et al. the current literature by boosting the performance of data mining techniques for predicting flash floods through a comparison of the most recent data mining techniques. Keywords: Artificial neural networks (ANN), Flash flood, k-nearest neighbor (kNN), Logistic regression (LR), Support vector machine (SVM)
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.