Purification of Air from Organic Compounds Using a Nanofiltration Composite Membrane Based on Cellulose Acetate and a Commercial OPMN-P Membrane

IF 2 Q4 CHEMISTRY, PHYSICAL
D. D. Fazullin, G. V. Mavrin, I. G. Shaikhiev
{"title":"Purification of Air from Organic Compounds Using a Nanofiltration Composite Membrane Based on Cellulose Acetate and a Commercial OPMN-P Membrane","authors":"D. D. Fazullin,&nbsp;G. V. Mavrin,&nbsp;I. G. Shaikhiev","doi":"10.1134/S251775162301002X","DOIUrl":null,"url":null,"abstract":"<p>Nanofiltration membranes are used to separate a vapor–air mixture containing organic compounds. The membrane is obtained on a filter paper substrate by pouring with a three-component polymer solution. The surface layers are deposited onto the substrate, sequentially alternating the stages of drying of the membrane. The resulting membrane possesses hydrophilic properties; the porosity of the resulting membrane is 51%. The thickness of the membrane determined by SEM is 98 µm. The retention capacity of the membranes is studied by separating ethanol–air and gasoline–air model mixtures. The membrane permeability of an MAC3 composite membrane during separation of an ethanol–air vapor–air mixture is 11.0 m<sup>3</sup> m<sup>−2</sup> h<sup>−1</sup> at 0.5 MPa. A high retention capacity of an MAC3 composite membrane is established for xylenes, toluene, and heptane; for other compounds, the efficiency is no higher than 90%. The average retention capacity of the resulting membrane is 87%. Comparative tests on the determination of the gas separation parameters under similar conditions are carried out with a commercial OPMN-P membrane.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"5 1","pages":"48 - 54"},"PeriodicalIF":2.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S251775162301002X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofiltration membranes are used to separate a vapor–air mixture containing organic compounds. The membrane is obtained on a filter paper substrate by pouring with a three-component polymer solution. The surface layers are deposited onto the substrate, sequentially alternating the stages of drying of the membrane. The resulting membrane possesses hydrophilic properties; the porosity of the resulting membrane is 51%. The thickness of the membrane determined by SEM is 98 µm. The retention capacity of the membranes is studied by separating ethanol–air and gasoline–air model mixtures. The membrane permeability of an MAC3 composite membrane during separation of an ethanol–air vapor–air mixture is 11.0 m3 m−2 h−1 at 0.5 MPa. A high retention capacity of an MAC3 composite membrane is established for xylenes, toluene, and heptane; for other compounds, the efficiency is no higher than 90%. The average retention capacity of the resulting membrane is 87%. Comparative tests on the determination of the gas separation parameters under similar conditions are carried out with a commercial OPMN-P membrane.

Abstract Image

基于醋酸纤维素和商用OPMN-P膜的纳滤复合膜净化有机化合物中的空气
纳滤膜用于分离含有有机化合物的蒸汽-空气混合物。用三组分聚合物溶液浇筑在滤纸基底上得到膜。表层沉积在基板上,依次交替进行膜的干燥阶段。所得膜具有亲水性;所得膜的孔隙率为51%。SEM测得膜的厚度为98µm。通过分离乙醇-空气和汽油-空气模型混合物,研究了膜的保留能力。在0.5 MPa下,MAC3复合膜在分离乙醇-空气蒸汽-空气混合物时的膜透性为11.0 m3 m−2 h−1。建立了MAC3复合膜对二甲苯、甲苯和庚烷的高截留能力;对于其他化合物,效率不高于90%。所得膜的平均保留容量为87%。在相似条件下,用OPMN-P膜进行了气体分离参数测定的对比试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
31.20%
发文量
38
期刊介绍: The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信