{"title":"A Yau–Tian–Donaldson correspondence on a class of toric fibrations","authors":"S. Jubert","doi":"10.5802/aif.3580","DOIUrl":null,"url":null,"abstract":"We established a Yau--Tian--Donaldson type correspondence, expressed in terms of a single Delzant polytope, concerning the existence of extremal K\\\"ahler metrics on a large class of toric fibrations, introduced by Apostolov--Calderbank--Gauduchon--Tonnesen-Friedman and called semi-simple principal toric fibrations. We use that an extremal metric on the total space corresponds to a weighted constant scalar curvature K\\\"ahler metric (in the sense of Lahdili) on the corresponding toric fiber in order to obtain an equivalence between the existence of extremal K\\\"ahler metrics on the total space and a suitable notion of weighted uniform K-stability of the corresponding Delzant polytope. As an application, we show that the projective plane bundle $\\mathbb{P}(\\mathcal{L}_0\\oplus\\mathcal{L}_1 \\oplus \\mathcal{L}_2)$, where $\\mathcal{L}_i$ are holomorphic line bundles over an elliptic curve, admits an extremal metric in every K\\\"ahler class.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3580","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We established a Yau--Tian--Donaldson type correspondence, expressed in terms of a single Delzant polytope, concerning the existence of extremal K\"ahler metrics on a large class of toric fibrations, introduced by Apostolov--Calderbank--Gauduchon--Tonnesen-Friedman and called semi-simple principal toric fibrations. We use that an extremal metric on the total space corresponds to a weighted constant scalar curvature K\"ahler metric (in the sense of Lahdili) on the corresponding toric fiber in order to obtain an equivalence between the existence of extremal K\"ahler metrics on the total space and a suitable notion of weighted uniform K-stability of the corresponding Delzant polytope. As an application, we show that the projective plane bundle $\mathbb{P}(\mathcal{L}_0\oplus\mathcal{L}_1 \oplus \mathcal{L}_2)$, where $\mathcal{L}_i$ are holomorphic line bundles over an elliptic curve, admits an extremal metric in every K\"ahler class.
期刊介绍:
The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French.
The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.