{"title":"Slicing-free Inverse Regression in High-dimensional Sufficient Dimension Reduction","authors":"Qing Mai, X. Shao, Runmin Wang, Xin Zhang","doi":"10.5705/ss.202022.0112","DOIUrl":null,"url":null,"abstract":"Sliced inverse regression (SIR, Li 1991) is a pioneering work and the most recognized method in sufficient dimension reduction. While promising progress has been made in theory and methods of high-dimensional SIR, two remaining challenges are still nagging high-dimensional multivariate applications. First, choosing the number of slices in SIR is a difficult problem, and it depends on the sample size, the distribution of variables, and other practical considerations. Second, the extension of SIR from univariate response to multivariate is not trivial. Targeting at the same dimension reduction subspace as SIR, we propose a new slicing-free method that provides a unified solution to sufficient dimension reduction with high-dimensional covariates and univariate or multivariate response. We achieve this by adopting the recently developed martingale difference divergence matrix (MDDM, Lee&Shao 2018) and penalized eigen-decomposition algorithms. To establish the consistency of our method with a high-dimensional predictor and a multivariate response, we develop a new concentration inequality for sample MDDM around its population counterpart using theories for U-statistics, which may be of independent interest. Simulations and real data analysis demonstrate the favorable finite sample performance of the proposed method.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0112","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
Sliced inverse regression (SIR, Li 1991) is a pioneering work and the most recognized method in sufficient dimension reduction. While promising progress has been made in theory and methods of high-dimensional SIR, two remaining challenges are still nagging high-dimensional multivariate applications. First, choosing the number of slices in SIR is a difficult problem, and it depends on the sample size, the distribution of variables, and other practical considerations. Second, the extension of SIR from univariate response to multivariate is not trivial. Targeting at the same dimension reduction subspace as SIR, we propose a new slicing-free method that provides a unified solution to sufficient dimension reduction with high-dimensional covariates and univariate or multivariate response. We achieve this by adopting the recently developed martingale difference divergence matrix (MDDM, Lee&Shao 2018) and penalized eigen-decomposition algorithms. To establish the consistency of our method with a high-dimensional predictor and a multivariate response, we develop a new concentration inequality for sample MDDM around its population counterpart using theories for U-statistics, which may be of independent interest. Simulations and real data analysis demonstrate the favorable finite sample performance of the proposed method.
期刊介绍:
Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.