TWISTED SHIFT-INVARIANT SYSTEM IN $L^2(\mathbb {R}^{2N})$

Pub Date : 2023-06-05 DOI:10.1017/nmj.2023.11
Santi Ranjan Das, R. Velsamy, Radha Ramakrishnan
{"title":"TWISTED SHIFT-INVARIANT SYSTEM IN \n$L^2(\\mathbb {R}^{2N})$","authors":"Santi Ranjan Das, R. Velsamy, Radha Ramakrishnan","doi":"10.1017/nmj.2023.11","DOIUrl":null,"url":null,"abstract":"Abstract We consider a general twisted shift-invariant system, \n$V^{t}(\\mathcal {A})$\n , consisting of twisted translates of countably many generators and study the problem of obtaining a characterization for the system \n$V^{t}(\\mathcal {A})$\n to form a frame sequence or a Riesz sequence. We illustrate our theory with some examples. In addition to these results, we study a dual twisted shift-invariant system and also obtain an orthonormal sequence of twisted translates from a given Riesz sequence of twisted translates.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider a general twisted shift-invariant system, $V^{t}(\mathcal {A})$ , consisting of twisted translates of countably many generators and study the problem of obtaining a characterization for the system $V^{t}(\mathcal {A})$ to form a frame sequence or a Riesz sequence. We illustrate our theory with some examples. In addition to these results, we study a dual twisted shift-invariant system and also obtain an orthonormal sequence of twisted translates from a given Riesz sequence of twisted translates.
分享
查看原文
$L^2(\mathbb{R}^{2N})中的扭转平移不变系统$
摘要我们考虑了一个由可数多个生成元的扭曲平移组成的一般扭曲移位不变系统$V^{t}(\mathcal{a})$,并研究了获得系统$V^{t}的特征以形成帧序列或Riesz序列的问题。我们用一些例子来说明我们的理论。除这些结果外,我们还研究了一个双扭移不变量系统,并从给定的扭平移序列Riesz中得到了一个扭平移的正交序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信