{"title":"Static and Motion Facial Analysis for Craniofacial Assessment and Diagnosing Diseases.","authors":"H. Matthews, G. de Jong, T. Maal, P. Claes","doi":"10.1146/annurev-biodatasci-122120-111413","DOIUrl":null,"url":null,"abstract":"Deviation from a normal facial shape and symmetry can arise from numerous sources, including physical injury and congenital birth defects. Such abnormalities can have important aesthetic and functional consequences. Furthermore, in clinical genetics distinctive facial appearances are often associated with clinical or genetic diagnoses; the recognition of a characteristic facial appearance can substantially narrow the search space of potential diagnoses for the clinician. Unusual patterns of facial movement and expression can indicate disturbances to normal mechanical functioning or emotional affect. Computational analyses of static and moving 2D and 3D images can serve clinicians and researchers by detecting and describing facial structural, mechanical, and affective abnormalities objectively. In this review we survey traditional and emerging methods of facial analysis, including statistical shape modeling, syndrome classification, modeling clinical face phenotype spaces, and analysis of facial motion and affect. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"1 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-122120-111413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Deviation from a normal facial shape and symmetry can arise from numerous sources, including physical injury and congenital birth defects. Such abnormalities can have important aesthetic and functional consequences. Furthermore, in clinical genetics distinctive facial appearances are often associated with clinical or genetic diagnoses; the recognition of a characteristic facial appearance can substantially narrow the search space of potential diagnoses for the clinician. Unusual patterns of facial movement and expression can indicate disturbances to normal mechanical functioning or emotional affect. Computational analyses of static and moving 2D and 3D images can serve clinicians and researchers by detecting and describing facial structural, mechanical, and affective abnormalities objectively. In this review we survey traditional and emerging methods of facial analysis, including statistical shape modeling, syndrome classification, modeling clinical face phenotype spaces, and analysis of facial motion and affect. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.