{"title":"Bounded vorticity for the 3D Ginzburg–Landau model and an isoflux problem","authors":"Carlos Rom'an, E. Sandier, S. Serfaty","doi":"10.1112/plms.12505","DOIUrl":null,"url":null,"abstract":"We consider the full three‐dimensional Ginzburg–Landau model of superconductivity with applied magnetic field, in the regime where the intensity of the applied field is close to the ‘first critical field’ Hc1$H_{c_1}$ at which vortex filaments appear, and in the asymptotics of a small inverse Ginzburg–Landau parameter ε$\\varepsilon$ . This onset of vorticity is directly related to an ‘isoflux problem’ on curves (finding a curve that maximizes the ratio of a magnetic flux by its length), whose study was initiated in [22] and which we continue here. By assuming a nondegeneracy condition for this isoflux problem, which we show holds at least for instance in the case of a ball, we prove that if the intensity of the applied field remains below Hc1+Clog|logε|${H_{c_1}}+ C \\log {|\\log \\varepsilon |}$ , the total vorticity remains bounded independently of ε$\\varepsilon$ , with vortex lines concentrating near the maximizer of the isoflux problem, thus extending to the three‐dimensional setting a two‐dimensional result of [28]. We finish by showing an improved estimate on the value of Hc1${H_{c_1}}$ in some specific simple geometries.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"126 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12505","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We consider the full three‐dimensional Ginzburg–Landau model of superconductivity with applied magnetic field, in the regime where the intensity of the applied field is close to the ‘first critical field’ Hc1$H_{c_1}$ at which vortex filaments appear, and in the asymptotics of a small inverse Ginzburg–Landau parameter ε$\varepsilon$ . This onset of vorticity is directly related to an ‘isoflux problem’ on curves (finding a curve that maximizes the ratio of a magnetic flux by its length), whose study was initiated in [22] and which we continue here. By assuming a nondegeneracy condition for this isoflux problem, which we show holds at least for instance in the case of a ball, we prove that if the intensity of the applied field remains below Hc1+Clog|logε|${H_{c_1}}+ C \log {|\log \varepsilon |}$ , the total vorticity remains bounded independently of ε$\varepsilon$ , with vortex lines concentrating near the maximizer of the isoflux problem, thus extending to the three‐dimensional setting a two‐dimensional result of [28]. We finish by showing an improved estimate on the value of Hc1${H_{c_1}}$ in some specific simple geometries.
期刊介绍:
The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers.
The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.