Future perspectives for alkali-activated materials: from existing standards to structural applications

Q2 Engineering
L. Rossi, Luiz Miranda de Lima, Yubo Sun, F. Dehn, J. Provis, G. Ye, G. de Schutter
{"title":"Future perspectives for alkali-activated materials: from existing standards to structural applications","authors":"L. Rossi, Luiz Miranda de Lima, Yubo Sun, F. Dehn, J. Provis, G. Ye, G. de Schutter","doi":"10.21809/rilemtechlett.2022.160","DOIUrl":null,"url":null,"abstract":"The production of cement and concrete contributes significantly to global greenhouse gas emissions. Alkali-activated concretes (AACs) are a family of existing alternative construction materials that could reduce the current environmental impact of Portland cement (PC) production and utilisation. Successful applications of AACs can be found in Europe and the former USSR since the 1950s and more recently in Australia, China and North America, proving their potential as construction materials. However, their utilisation is limited presently by the lack of normative and construction guidelines. Raw materials’ non-uniform global availability and variable intrinsic properties, coupled with the lack of specific testing methods, raise questions regarding reproducibility and reliability. The mechanical and chemical behaviour of AACs has been investigated extensively over the past decades, strengthening its potential as a sustainable substitute for traditional PC-based concrete. Although a wide amount of studies demonstrated that AACs could meet and even exceed the performance requirements provided by European design standards, a classification of these broad spectra of materials, as well as new analytical models linking the chemistry of the system components to the mechanical behaviour of the material, still need further development. This report gives an overview of the potential of alkali-activated systems technology, focusing on the limitations and challenges still hindering their standardisation and wider application in the construction field.","PeriodicalId":36420,"journal":{"name":"RILEM Technical Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RILEM Technical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21809/rilemtechlett.2022.160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

The production of cement and concrete contributes significantly to global greenhouse gas emissions. Alkali-activated concretes (AACs) are a family of existing alternative construction materials that could reduce the current environmental impact of Portland cement (PC) production and utilisation. Successful applications of AACs can be found in Europe and the former USSR since the 1950s and more recently in Australia, China and North America, proving their potential as construction materials. However, their utilisation is limited presently by the lack of normative and construction guidelines. Raw materials’ non-uniform global availability and variable intrinsic properties, coupled with the lack of specific testing methods, raise questions regarding reproducibility and reliability. The mechanical and chemical behaviour of AACs has been investigated extensively over the past decades, strengthening its potential as a sustainable substitute for traditional PC-based concrete. Although a wide amount of studies demonstrated that AACs could meet and even exceed the performance requirements provided by European design standards, a classification of these broad spectra of materials, as well as new analytical models linking the chemistry of the system components to the mechanical behaviour of the material, still need further development. This report gives an overview of the potential of alkali-activated systems technology, focusing on the limitations and challenges still hindering their standardisation and wider application in the construction field.
碱活性材料的未来展望:从现有标准到结构应用
水泥和混凝土的生产大大增加了全球温室气体排放。碱活性混凝土(AACs)是一类现有的替代建筑材料,可以减少波特兰水泥(PC)生产和使用对环境的影响。自20世纪50年代以来,AAC在欧洲和前苏联以及最近在澳大利亚、中国和北美的成功应用证明了其作为建筑材料的潜力。然而,由于缺乏规范和施工指南,它们的使用目前受到限制。原材料的不均匀全局可用性和可变的内在特性,加上缺乏具体的测试方法,引发了关于再现性和可靠性的问题。在过去的几十年里,人们对AACs的力学和化学性能进行了广泛的研究,增强了其作为传统PC基混凝土的可持续替代品的潜力。尽管大量研究表明,AAC可以满足甚至超过欧洲设计标准提供的性能要求,但对这些广谱材料的分类,以及将系统组件的化学性质与材料的机械性能联系起来的新分析模型,仍需进一步开发。本报告概述了碱活化系统技术的潜力,重点介绍了仍阻碍其标准化和在建筑领域更广泛应用的局限性和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RILEM Technical Letters
RILEM Technical Letters Materials Science-Materials Science (all)
CiteScore
5.00
自引率
0.00%
发文量
13
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信