A New Chiral Beam Element for Modelling Chiral Honeycombs

X. Lu, C. By, Tan V.B.C., Tay Te
{"title":"A New Chiral Beam Element for Modelling Chiral Honeycombs","authors":"X. Lu, C. By, Tan V.B.C., Tay Te","doi":"10.4172/2168-9873.1000249","DOIUrl":null,"url":null,"abstract":"Chiral honeycombs which exhibit auxetic behaviors (negative Poisson’s ratios) have attracted much research interest due to their novel mechanical properties. They are broadly used in designing new functional structures, such as energy absorption and noise mitigation materials. To analyze the behaviors of these materials, finite element models are generally adopted, which may require much time and labor to construct and implement. To simplify the numerical modelling, a novel Chiral Beam Element for finite element simulation is proposed in this paper. Both static and dynamic analyses are conducted and the numerical expense, i.e., the modelling procedures and the computational time, is reduced significantly when compared to traditional finite element models.","PeriodicalId":90573,"journal":{"name":"Journal of applied mechanical engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2168-9873.1000249","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied mechanical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9873.1000249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Chiral honeycombs which exhibit auxetic behaviors (negative Poisson’s ratios) have attracted much research interest due to their novel mechanical properties. They are broadly used in designing new functional structures, such as energy absorption and noise mitigation materials. To analyze the behaviors of these materials, finite element models are generally adopted, which may require much time and labor to construct and implement. To simplify the numerical modelling, a novel Chiral Beam Element for finite element simulation is proposed in this paper. Both static and dynamic analyses are conducted and the numerical expense, i.e., the modelling procedures and the computational time, is reduced significantly when compared to traditional finite element models.
一种用于模拟手性蜂窝的新型手性梁单元
手性蜂窝由于其新颖的力学性能而引起了人们的广泛关注。它们被广泛用于设计新的功能结构,如能量吸收和降噪材料。为了分析这些材料的行为,通常采用有限元模型,这可能需要大量的时间和劳动力来构建和实施。为了简化数值模拟,本文提出了一种用于有限元模拟的新型手性梁单元。与传统的有限元模型相比,既进行了静态分析,也进行了动态分析,并且显著减少了数值费用,即建模程序和计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信