{"title":"A sequence-based two-layer predictor for identifying enhancers and their strength through enhanced feature extraction","authors":"Santhosh Amilpur, Raju Bhukya","doi":"10.1142/S0219720022500056","DOIUrl":null,"url":null,"abstract":"Enhancers are short regulatory DNA fragments that are bound with proteins called activators. They are free-bound and distant elements, which play a vital role in controlling gene expression. It is challenging to identify enhancers and their strength due to their dynamic nature. Although some machine learning methods exist to accelerate identification process, their prediction accuracy and efficiency will need more improvement. In this regard, we propose a two-layer prediction model with enhanced feature extraction strategy which does feature combination from improved position-specific amino acid propensity (PSTKNC) method along with Enhanced Nucleic Acid Composition (ENAC) and Composition of k-spaced Nucleic Acid Pairs (CKSNAP). The feature sets from all three feature extraction approaches were concatenated and then sent through a simple artificial neural network (ANN) to accurately identify enhancers in the first layer and their strength in the second layer. Experiments are conducted on benchmark chromatin nine cell lines dataset. A 10-fold cross validation method is employed to evaluate model's performance. The results show that the proposed model gives an outstanding performance with 94.50%, 0.8903 of accuracy and Matthew's correlation coefficient (MCC) in predicting enhancers and fairly does well with independent test also when compared with all other existing methods.","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"1 1","pages":"2250005"},"PeriodicalIF":0.9000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720022500056","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Enhancers are short regulatory DNA fragments that are bound with proteins called activators. They are free-bound and distant elements, which play a vital role in controlling gene expression. It is challenging to identify enhancers and their strength due to their dynamic nature. Although some machine learning methods exist to accelerate identification process, their prediction accuracy and efficiency will need more improvement. In this regard, we propose a two-layer prediction model with enhanced feature extraction strategy which does feature combination from improved position-specific amino acid propensity (PSTKNC) method along with Enhanced Nucleic Acid Composition (ENAC) and Composition of k-spaced Nucleic Acid Pairs (CKSNAP). The feature sets from all three feature extraction approaches were concatenated and then sent through a simple artificial neural network (ANN) to accurately identify enhancers in the first layer and their strength in the second layer. Experiments are conducted on benchmark chromatin nine cell lines dataset. A 10-fold cross validation method is employed to evaluate model's performance. The results show that the proposed model gives an outstanding performance with 94.50%, 0.8903 of accuracy and Matthew's correlation coefficient (MCC) in predicting enhancers and fairly does well with independent test also when compared with all other existing methods.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.