The first moment of primes in arithmetic progressions: beyond the Siegel–Walfisz range

IF 1.1 Q1 MATHEMATICS
S. Drappeau, D. Fiorilli
{"title":"The first moment of primes in arithmetic progressions: beyond the Siegel–Walfisz range","authors":"S. Drappeau, D. Fiorilli","doi":"10.1112/tlm3.12030","DOIUrl":null,"url":null,"abstract":"We investigate the first moment of primes in progressions ∑q⩽x/N(q,a)=1ψ(x;q,a)−xφ(q)as x,N→∞ . We show unconditionally that, when a=1 , there is a significant bias towards negative values, uniformly for N⩽eclogx . The proof combines recent results of the authors on the first moment and on the error term in the dispersion method. More generally, for a∈Z∖{0} we prove estimates that take into account the potential existence (or inexistence) of Landau–Siegel zeros.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the first moment of primes in progressions ∑q⩽x/N(q,a)=1ψ(x;q,a)−xφ(q)as x,N→∞ . We show unconditionally that, when a=1 , there is a significant bias towards negative values, uniformly for N⩽eclogx . The proof combines recent results of the authors on the first moment and on the error term in the dispersion method. More generally, for a∈Z∖{0} we prove estimates that take into account the potential existence (or inexistence) of Landau–Siegel zeros.
等差数列中质数的第一阶矩:超出西格尔-沃尔菲兹值域
研究了级数∑q≤x/N(q,a)=1ψ(x;q,a)−xφ(q)为x,N→∞时的素数的一阶矩。我们无条件地证明,当a=1时,对于N≤eclogx,存在向负值的显著偏差。该证明结合了作者最近关于弥散法中第一矩和误差项的结果。更一般地说,对于a∈Z∈{0},我们证明了考虑到朗道-西格尔零可能存在(或不存在)的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信