{"title":"What Is Probability of Detection?","authors":"M. Cherry, Christine E. Knott","doi":"10.32548/2022.me-04324","DOIUrl":null,"url":null,"abstract":"Probability of detection (POD) evaluation is a widely accepted practice for quantifying the reliability of a nondestructive testing (NDT) technique. Inspections are often conceptualized and developed in laboratory environments, where factors affecting the inspection are highly controlled. However, when implemented in practice, NDT inspections suffer from many sources of variability, including changes from nominal geometry of the test piece, sensor variability, differences between operators, environmental effects on the sensor response including thermal and electromagnetic interference, and a myriad of other factors that are not present in the lab. Thus, to transition the NDT from the lab to production environments, engineers must have a quantified understanding of uncertainties. This is especially true for NDT systems that are implemented for safety-critical structures, where the life of the component may be managed with NDT. A fundamental question that must be answered in this context is: What is the largest discontinuity that could be missed when this NDT technique is implemented?","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/2022.me-04324","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1
Abstract
Probability of detection (POD) evaluation is a widely accepted practice for quantifying the reliability of a nondestructive testing (NDT) technique. Inspections are often conceptualized and developed in laboratory environments, where factors affecting the inspection are highly controlled. However, when implemented in practice, NDT inspections suffer from many sources of variability, including changes from nominal geometry of the test piece, sensor variability, differences between operators, environmental effects on the sensor response including thermal and electromagnetic interference, and a myriad of other factors that are not present in the lab. Thus, to transition the NDT from the lab to production environments, engineers must have a quantified understanding of uncertainties. This is especially true for NDT systems that are implemented for safety-critical structures, where the life of the component may be managed with NDT. A fundamental question that must be answered in this context is: What is the largest discontinuity that could be missed when this NDT technique is implemented?
期刊介绍:
Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.