Morse index, Betti numbers, and singular set of bounded area minimal hypersurfaces

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Antoine Song
{"title":"Morse index, Betti numbers, and singular set of bounded area minimal hypersurfaces","authors":"Antoine Song","doi":"10.1215/00127094-2023-0012","DOIUrl":null,"url":null,"abstract":"We introduce a combinatorial argument to study closed minimal hypersurfaces of bounded area and high Morse index. Let $(M^{n+1},g)$ be a closed Riemannian manifold and $\\Sigma\\subset M$ be a closed embedded minimal hypersurface with area at most $A>0$ and with a singular set of Hausdorff dimension at most $n-7$. We show the following bounds: there is $C_A>0$ depending only on $n$, $g$, and $A$ so that $$\\sum_{i=0}^n b^i(\\Sigma) \\leq C_A \\big(1+index(\\Sigma)\\big) \\quad \\text{ if $3\\leq n+1\\leq 7$},$$ $$\\mathcal{H}^{n-7}\\big(Sing(\\Sigma)\\big) \\leq C_A \\big(1+index(\\Sigma)\\big)^{7/n} \\quad \\text{ if $n+1\\geq 8$},$$ where $b^i$ denote the Betti numbers over any field, $\\mathcal{H}^{n-7}$ is the $(n-7)$-dimensional Hausdorff measure and $Sing(\\Sigma)$ is the singular set of $\\Sigma$. In fact in dimension $n+1=3$, $C_A$ depends linearly on $A$. We list some open problems at the end of the paper.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2023-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 10

Abstract

We introduce a combinatorial argument to study closed minimal hypersurfaces of bounded area and high Morse index. Let $(M^{n+1},g)$ be a closed Riemannian manifold and $\Sigma\subset M$ be a closed embedded minimal hypersurface with area at most $A>0$ and with a singular set of Hausdorff dimension at most $n-7$. We show the following bounds: there is $C_A>0$ depending only on $n$, $g$, and $A$ so that $$\sum_{i=0}^n b^i(\Sigma) \leq C_A \big(1+index(\Sigma)\big) \quad \text{ if $3\leq n+1\leq 7$},$$ $$\mathcal{H}^{n-7}\big(Sing(\Sigma)\big) \leq C_A \big(1+index(\Sigma)\big)^{7/n} \quad \text{ if $n+1\geq 8$},$$ where $b^i$ denote the Betti numbers over any field, $\mathcal{H}^{n-7}$ is the $(n-7)$-dimensional Hausdorff measure and $Sing(\Sigma)$ is the singular set of $\Sigma$. In fact in dimension $n+1=3$, $C_A$ depends linearly on $A$. We list some open problems at the end of the paper.
Morse指数、Betti数和有界区域极小超曲面的奇异集
我们引入一个组合论证来研究有界面积和高莫尔斯指数的闭极小超曲面。设$(M^{n+1},g)$为封闭黎曼流形,$\Sigma\subset M$为封闭嵌入极小超曲面,面积不超过$A>0$,豪斯多夫维数不超过$n-7$。我们证明了以下界限:$C_A>0$仅依赖于$n$, $g$和$A$,因此$$\sum_{i=0}^n b^i(\Sigma) \leq C_A \big(1+index(\Sigma)\big) \quad \text{ if $3\leq n+1\leq 7$},$$$$\mathcal{H}^{n-7}\big(Sing(\Sigma)\big) \leq C_A \big(1+index(\Sigma)\big)^{7/n} \quad \text{ if $n+1\geq 8$},$$其中$b^i$表示任意域上的Betti数,$\mathcal{H}^{n-7}$是$(n-7)$的一维Hausdorff测度,$Sing(\Sigma)$是$\Sigma$的奇异集。事实上,在维度$n+1=3$中,$C_A$线性依赖于$A$。我们在论文的最后列出了一些有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信