{"title":"Modular orbits on the representation spaces of compact abelian Lie groups","authors":"Yohann Bouilly, Gianluca Faraco","doi":"10.4171/ggd/716","DOIUrl":null,"url":null,"abstract":"Let $S$ be a closed surface of genus $g$ greater than zero. In the present paper we study the topological-dynamical action of the mapping class group on the $\\Bbb T^n$-character variety giving necessary and sufficient conditions for Mod$(S)$-orbits to be dense. As an application, such a characterisation provides a dynamical proof of the Kronecker's Theorem concerning inhomogeneous diophantine approximation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let $S$ be a closed surface of genus $g$ greater than zero. In the present paper we study the topological-dynamical action of the mapping class group on the $\Bbb T^n$-character variety giving necessary and sufficient conditions for Mod$(S)$-orbits to be dense. As an application, such a characterisation provides a dynamical proof of the Kronecker's Theorem concerning inhomogeneous diophantine approximation.