Modular orbits on the representation spaces of compact abelian Lie groups

Pub Date : 2021-03-27 DOI:10.4171/ggd/716
Yohann Bouilly, Gianluca Faraco
{"title":"Modular orbits on the representation spaces of compact abelian Lie groups","authors":"Yohann Bouilly, Gianluca Faraco","doi":"10.4171/ggd/716","DOIUrl":null,"url":null,"abstract":"Let $S$ be a closed surface of genus $g$ greater than zero. In the present paper we study the topological-dynamical action of the mapping class group on the $\\Bbb T^n$-character variety giving necessary and sufficient conditions for Mod$(S)$-orbits to be dense. As an application, such a characterisation provides a dynamical proof of the Kronecker's Theorem concerning inhomogeneous diophantine approximation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $S$ be a closed surface of genus $g$ greater than zero. In the present paper we study the topological-dynamical action of the mapping class group on the $\Bbb T^n$-character variety giving necessary and sufficient conditions for Mod$(S)$-orbits to be dense. As an application, such a characterisation provides a dynamical proof of the Kronecker's Theorem concerning inhomogeneous diophantine approximation.
分享
查看原文
紧阿贝尔李群表示空间上的模轨道
设$S$是一个$g$大于零的闭曲面。本文研究了映射类群对$\Bbb T^n$-字符变化的拓扑动力学作用,给出了Mod$(S)$-轨道致密的充分必要条件。作为一种应用,这种表征提供了关于非齐次丢芬图近似的克罗内克定理的动态证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信