{"title":"The canonical form of multiplication modules","authors":"B. Boudine, Charkani Mohammed Elhassani","doi":"10.5269/bspm.52858","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative ring with unit. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$, there is an ideal $I$ of $R$ such that $N=IM$. $M$ is called also a CF-module if there is some ideals $I_1,...,I_n$ of $R$ such that $M \\simeq R/I_1 \\bigoplus R/I_2 \\bigoplus ... \\bigoplus R/I_n$ and $I_1 \\subseteq I_2 \\subseteq ... \\subseteq I_n$. In this paper, we use some new results about $\\mu_R(M)$ the minimal number of generators of $M$ to show that a finitely generated multiplication module is a CF-module if and only if it is a cyclic module.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.52858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $R$ be a commutative ring with unit. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$, there is an ideal $I$ of $R$ such that $N=IM$. $M$ is called also a CF-module if there is some ideals $I_1,...,I_n$ of $R$ such that $M \simeq R/I_1 \bigoplus R/I_2 \bigoplus ... \bigoplus R/I_n$ and $I_1 \subseteq I_2 \subseteq ... \subseteq I_n$. In this paper, we use some new results about $\mu_R(M)$ the minimal number of generators of $M$ to show that a finitely generated multiplication module is a CF-module if and only if it is a cyclic module.