{"title":"A Hybrid Unconscious Search Algorithm for Mixed-model Assembly Line Balancing Problem with SDST, Parallel Workstation and Learning Effect","authors":"Moein Asadi-Zonouz, M. Khalili, Hamed Tayebi","doi":"10.22094/JOIE.2020.579974.1605","DOIUrl":null,"url":null,"abstract":"Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid method based on unconscious search algorithm (USGA) is proposed to solve mixed-model assembly line balancing problem considering some realistic conditions such as parallel workstation, zoning constraints, sequence dependent setup times and learning effect. This method is a modified version of the unconscious search algorithm which applies the operators of genetic algorithm as the local search step. Performance of the proposed algorithm is tested on a set of test problems and compared with GA and ACOGA. The experimental results indicate that USGA outperforms GA and ACOGA.","PeriodicalId":36956,"journal":{"name":"Journal of Optimization in Industrial Engineering","volume":"13 1","pages":"123-140"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization in Industrial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22094/JOIE.2020.579974.1605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid method based on unconscious search algorithm (USGA) is proposed to solve mixed-model assembly line balancing problem considering some realistic conditions such as parallel workstation, zoning constraints, sequence dependent setup times and learning effect. This method is a modified version of the unconscious search algorithm which applies the operators of genetic algorithm as the local search step. Performance of the proposed algorithm is tested on a set of test problems and compared with GA and ACOGA. The experimental results indicate that USGA outperforms GA and ACOGA.