Elliptic Theory for Sets with Higher Co-dimensional Boundaries

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
G. David, J. Feneuil, S. Mayboroda
{"title":"Elliptic Theory for Sets with Higher Co-dimensional Boundaries","authors":"G. David, J. Feneuil, S. Mayboroda","doi":"10.1090/memo/1346","DOIUrl":null,"url":null,"abstract":"<p>Many geometric and analytic properties of sets hinge on the properties of elliptic measure, notoriously missing for sets of higher co-dimension. The aim of this manuscript is to develop a version of elliptic theory, associated to a linear PDE, which ultimately yields a notion analogous to that of the harmonic measure, for sets of codimension higher than 1.</p>\n\n<p>To this end, we turn to degenerate elliptic equations. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma subset-of double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma \\subset \\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be an Ahlfors regular set of dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d greater-than n minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d>n-1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (not necessarily integer) and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega equals double-struck upper R Superscript n Baseline minus normal upper Gamma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:mo class=\"MJX-variant\">∖<!-- ∖ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Omega = \\mathbb {R}^n \\setminus \\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L equals minus d i v upper A nabla\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>L</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>div</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mi>A</mml:mi>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">L = - \\operatorname {div} A\\nabla</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a degenerate elliptic operator with measurable coefficients such that the ellipticity constants of the matrix <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are bounded from above and below by a multiple of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d i s t left-parenthesis dot comma normal upper Gamma right-parenthesis Superscript d plus 1 minus n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>dist</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>⋅<!-- ⋅ --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>d</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {dist}(\\cdot , \\Gamma )^{d+1-n}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We define weak solutions; prove trace and extension theorems in suitable weighted Sobolev spaces; establish the maximum principle, De Giorgi-Nash-Moser estimates, the Harnack inequality, the Hölder continuity of solutions (inside and at the boundary). We define the Green function and provide the basic set of pointwise and/or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript p\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> estimates for the Green function and for its gradient. With this at hand, we define harmonic measure associated to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, establish its doubling property, non-degeneracy, change-of-the-pole formulas, and, finally, the comparison principle for local solutions.</p>\n\n<p>In another article to appear, we will prove that when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the graph of a Lipschitz function with small Lipschitz constant, we can find an elliptic operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for which the harmonic measure given here is absolutely continuous with respect to the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Hausdorff measure on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and vice versa. It thus extends Dahlberg’s theorem to some sets of codimension higher than 1.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3

Abstract

Many geometric and analytic properties of sets hinge on the properties of elliptic measure, notoriously missing for sets of higher co-dimension. The aim of this manuscript is to develop a version of elliptic theory, associated to a linear PDE, which ultimately yields a notion analogous to that of the harmonic measure, for sets of codimension higher than 1.

To this end, we turn to degenerate elliptic equations. Let Γ R n \Gamma \subset \mathbb {R}^n be an Ahlfors regular set of dimension d > n 1 d>n-1 (not necessarily integer) and Ω = R n Γ \Omega = \mathbb {R}^n \setminus \Gamma . Let L = div A L = - \operatorname {div} A\nabla be a degenerate elliptic operator with measurable coefficients such that the ellipticity constants of the matrix A A are bounded from above and below by a multiple of dist ( , Γ ) d + 1 n \operatorname {dist}(\cdot , \Gamma )^{d+1-n} . We define weak solutions; prove trace and extension theorems in suitable weighted Sobolev spaces; establish the maximum principle, De Giorgi-Nash-Moser estimates, the Harnack inequality, the Hölder continuity of solutions (inside and at the boundary). We define the Green function and provide the basic set of pointwise and/or L p L^p estimates for the Green function and for its gradient. With this at hand, we define harmonic measure associated to L L , establish its doubling property, non-degeneracy, change-of-the-pole formulas, and, finally, the comparison principle for local solutions.

In another article to appear, we will prove that when Γ \Gamma is the graph of a Lipschitz function with small Lipschitz constant, we can find an elliptic operator L L for which the harmonic measure given here is absolutely continuous with respect to the d d -Hausdorff measure on Γ \Gamma and vice versa. It thus extends Dahlberg’s theorem to some sets of codimension higher than 1.

高协维边界集的椭圆理论
集合的许多几何性质和解析性质取决于椭圆测度的性质,而这在高协维集合中是众所周知的缺失。这个手稿的目的是发展一个版本的椭圆理论,与线性偏微分方程相关,最终产生一个类似于谐波测度的概念,对于余维数高于1的集合。为此,我们转向简并椭圆方程。设Γ∧R n \Gamma\subset\mathbbr{ ^n是维数d>n−1 d>n-1(不一定是整数)的Ahlfors正则集,并且Ω = R n≠Γ }\Omega = \mathbbr{ ^n }\setminus\Gamma。∇L = - \operatornamediv{ A }\nabla是一个简并的椭圆算子,它具有可测量的系数,使得矩阵A A的椭圆常数从上到下由一个倍的dist (Γ) d + 1−n \operatornamedist{ (}\cdot, \Gamma)^ {d+1-n}。我们定义弱解;在适当的加权Sobolev空间中证明迹定理和可拓定理;建立了极大值原理、De Giorgi-Nash-Moser估计、Harnack不等式、解(边界内和边界处)的Hölder连续性。我们定义了Green函数,并提供了Green函数及其梯度的点向和/或lpl ^p估计的基本集合。在此基础上,我们定义了与ll相关的调和测度,建立了它的倍性、非简并性、极变公式,最后给出了局部解的比较原理。在即将出现的另一篇文章中,我们将证明当Γ \Gamma是具有小Lipschitz常数的Lipschitz函数的图时,我们可以找到一个椭圆算子L L,对于它,这里给出的调和测度相对于Γ \Gamma上的d d -Hausdorff测度是绝对连续的,反之亦然。从而将Dahlberg定理推广到余维数大于1的一些集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信