{"title":"Preparation of Biodegradable Reduced Graphene Oxide/Agar Composites by In Situ Reduction of Graphene Oxide","authors":"Mezigebu Belay","doi":"10.1155/2023/4583522","DOIUrl":null,"url":null,"abstract":"Plastics are ubiquitous in our daily life. However, the use of petrochemical-based plastic as packaging materials causes the depletion of non-renewable resources, thereby leading to an increase in oil prices and economic crises. Moreover, these petrochemical plastics raise the issue of environmental pollution due to their non-biodegradability. Owing to this, there is a need to develop an alternative biodegradable and eco-friendly packing material. Agar, which is extracted from seaweeds, is one of the abundantly available polymers. However, moderate tensile strength and thermal stability restrict its application. As a step forward, agar/reduced graphene oxide (RGO) composites were prepared by in situ reduction of GO in the polymer matrix. The tensile strength of the composite was found to increase by 55% at 2% RGO loading. The electrical conductivity and thermal properties of the composite were also improved. The presence of conductivity suggested that apart from packaging, agar/RGO composites can also have potential applications as capacitor plates creating a supercapacitor and as electric field-induced wound healing material.","PeriodicalId":14283,"journal":{"name":"International Journal of Polymer Science","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/4583522","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Plastics are ubiquitous in our daily life. However, the use of petrochemical-based plastic as packaging materials causes the depletion of non-renewable resources, thereby leading to an increase in oil prices and economic crises. Moreover, these petrochemical plastics raise the issue of environmental pollution due to their non-biodegradability. Owing to this, there is a need to develop an alternative biodegradable and eco-friendly packing material. Agar, which is extracted from seaweeds, is one of the abundantly available polymers. However, moderate tensile strength and thermal stability restrict its application. As a step forward, agar/reduced graphene oxide (RGO) composites were prepared by in situ reduction of GO in the polymer matrix. The tensile strength of the composite was found to increase by 55% at 2% RGO loading. The electrical conductivity and thermal properties of the composite were also improved. The presence of conductivity suggested that apart from packaging, agar/RGO composites can also have potential applications as capacitor plates creating a supercapacitor and as electric field-induced wound healing material.
期刊介绍:
The International Journal of Polymer Science is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles on the chemistry and physics of macromolecules.