{"title":"The structure of groups with all proper quotients virtually nilpotent","authors":"B. Klopsch, M. Quick","doi":"10.2140/pjm.2023.325.147","DOIUrl":null,"url":null,"abstract":"Just infinite groups play a significant role in profinite group theory. For each $c \\geq 0$, we consider more generally JNN$_c$F profinite (or, in places, discrete) groups that are Fitting-free; these are the groups $G$ such that every proper quotient of $G$ is virtually class-$c$ nilpotent whereas $G$ itself is not, and additionally $G$ does not have any non-trivial abelian normal subgroup. When $c = 1$, we obtain the just non-(virtually abelian) groups without non-trivial abelian normal subgroups. Our first result is that a finitely generated profinite group is virtually class\\nbd$c$ nilpotent if and only if there are only finitely many subgroups arising as the lower central series terms $\\gamma_{c+1}(K)$ of open normal subgroups $K$ of $G$. Based on this we prove several structure theorems. For instance, we characterize the JNN$_c$F profinite groups in terms of subgroups of the above form $\\gamma_{c+1}(K)$. We also give a description of JNN$_c$F profinite groups as suitable inverse limits of virtually nilpotent profinite groups. Analogous results are established for the family of hereditarily JNN$_c$F groups and, for instance, we show that a Fitting-free JNN$_c$F profinite (or discrete) group is hereditarily JNN$_cF$ if and only if every maximal subgroup of finite index is JNN$_c$F. Finally, we give a construction of hereditarily JNN$_c$F groups, which uses as an input known families of hereditarily just infinite groups.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.325.147","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Just infinite groups play a significant role in profinite group theory. For each $c \geq 0$, we consider more generally JNN$_c$F profinite (or, in places, discrete) groups that are Fitting-free; these are the groups $G$ such that every proper quotient of $G$ is virtually class-$c$ nilpotent whereas $G$ itself is not, and additionally $G$ does not have any non-trivial abelian normal subgroup. When $c = 1$, we obtain the just non-(virtually abelian) groups without non-trivial abelian normal subgroups. Our first result is that a finitely generated profinite group is virtually class\nbd$c$ nilpotent if and only if there are only finitely many subgroups arising as the lower central series terms $\gamma_{c+1}(K)$ of open normal subgroups $K$ of $G$. Based on this we prove several structure theorems. For instance, we characterize the JNN$_c$F profinite groups in terms of subgroups of the above form $\gamma_{c+1}(K)$. We also give a description of JNN$_c$F profinite groups as suitable inverse limits of virtually nilpotent profinite groups. Analogous results are established for the family of hereditarily JNN$_c$F groups and, for instance, we show that a Fitting-free JNN$_c$F profinite (or discrete) group is hereditarily JNN$_cF$ if and only if every maximal subgroup of finite index is JNN$_c$F. Finally, we give a construction of hereditarily JNN$_c$F groups, which uses as an input known families of hereditarily just infinite groups.
期刊介绍:
Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.