Characterizing the existence of a Borel complete expansion

IF 0.5 3区 数学 Q3 MATHEMATICS
M. Laskowski, Douglas Ulrich
{"title":"Characterizing the existence of a Borel complete expansion","authors":"M. Laskowski, Douglas Ulrich","doi":"10.4064/fm278-4-2023","DOIUrl":null,"url":null,"abstract":"We develop general machinery to cast the class of potential canonical Scott sentences of an infinitary sentence $\\Phi$ as a class of structures in a related language. From this, we show that $\\Phi$ has a Borel complete expansion if and only if $S_\\infty$ divides $Aut(M)$ for some countable model $M\\models \\Phi$. Using this, we prove that for theories $T_h$ asserting that $\\{E_n\\}$ is a countable family of cross cutting equivalence relations with $h(n)$ classes, if $h(n)$ is uniformly bounded then $T_h$ is not Borel complete, providing a converse to Theorem~2.1 of \\cite{LU}.","PeriodicalId":55138,"journal":{"name":"Fundamenta Mathematicae","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm278-4-2023","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We develop general machinery to cast the class of potential canonical Scott sentences of an infinitary sentence $\Phi$ as a class of structures in a related language. From this, we show that $\Phi$ has a Borel complete expansion if and only if $S_\infty$ divides $Aut(M)$ for some countable model $M\models \Phi$. Using this, we prove that for theories $T_h$ asserting that $\{E_n\}$ is a countable family of cross cutting equivalence relations with $h(n)$ classes, if $h(n)$ is uniformly bounded then $T_h$ is not Borel complete, providing a converse to Theorem~2.1 of \cite{LU}.
刻画Borel完全展开的存在性
我们开发了通用机制,将不定式句子$\Phi$的潜在规范Scott句子类投射为相关语言中的一类结构。由此,我们证明了$\Phi$具有Borel完全展开,当且仅当$S\infty$对一些可数模型$M\models\Phi$除$Aut(M)$。利用这一点,我们证明了对于断言$\{E_n\}$是具有$h(n)$类的横切等价关系的可数族的理论$T_h$,如果$h(n)$是一致有界的,则$T_h$不是Borel完备的,从而提供了与\ cite{LU}的定理~2.1的逆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamenta Mathematicae
Fundamenta Mathematicae 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: FUNDAMENTA MATHEMATICAE concentrates on papers devoted to Set Theory, Mathematical Logic and Foundations of Mathematics, Topology and its Interactions with Algebra, Dynamical Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信