Hybrid organic-inorganic Fe3O(TFBDC)3(H2O)3·(DMF)3 compound synthesized by slow evaporation method: Characterization and comparison of magnetic properties
A. Laurikėnas, K. Mažeika, D. Baltrunas, R. Skaudžius, A. Beganskiene, A. Kareiva
{"title":"Hybrid organic-inorganic Fe3O(TFBDC)3(H2O)3·(DMF)3 compound synthesized by slow evaporation method: Characterization and comparison of magnetic properties","authors":"A. Laurikėnas, K. Mažeika, D. Baltrunas, R. Skaudžius, A. Beganskiene, A. Kareiva","doi":"10.3952/physics.v60i1.4166","DOIUrl":null,"url":null,"abstract":"In this study for the synthesis of a hybrid organic-inorganic Fe3O(TFBDC)3(H2O)3·(DMF)3 compound a slow evaporation method has been suggested. THe synthesis product was characterized using X-ray powder diffraction (XRD) analysis, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) coupled with SEM and electron paramagnetic resonance (EPR) spectroscopy. THe antiferromagnetic/weakly ferromagnetic behaviour of the synthesized sample was confirmed by magnetization measurements and Mössbauer spectroscopy. THe synthesized magnetic material could be itself tested for different medical applications and could be used as precursor material for the preparation of nanostructured iron oxides with a variety of useful properties for biomedicine.","PeriodicalId":18144,"journal":{"name":"Lithuanian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithuanian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3952/physics.v60i1.4166","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
In this study for the synthesis of a hybrid organic-inorganic Fe3O(TFBDC)3(H2O)3·(DMF)3 compound a slow evaporation method has been suggested. THe synthesis product was characterized using X-ray powder diffraction (XRD) analysis, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) coupled with SEM and electron paramagnetic resonance (EPR) spectroscopy. THe antiferromagnetic/weakly ferromagnetic behaviour of the synthesized sample was confirmed by magnetization measurements and Mössbauer spectroscopy. THe synthesized magnetic material could be itself tested for different medical applications and could be used as precursor material for the preparation of nanostructured iron oxides with a variety of useful properties for biomedicine.
期刊介绍:
The main aim of the Lithuanian Journal of Physics is to reflect the most recent advances in various fields of theoretical, experimental, and applied physics, including: mathematical and computational physics; subatomic physics; atoms and molecules; chemical physics; electrodynamics and wave processes; nonlinear and coherent optics; spectroscopy.