{"title":"The existence of renormalized solution for quasilinear parabolic problem with variable exponents and measure data","authors":"Fairouz Souileh, M. Maouni, K. Slimani","doi":"10.5269/bspm.51207","DOIUrl":null,"url":null,"abstract":"In this paper, the study of the existence of a renormalized solution for quasilinear parabolicproblem with variable exponents and measure data. The model is: \nu_{t}-\\text{div}(\\left\\vert \\nabla u\\right\\vert ^{p(x)-2}\\nabla u)+\\lambda\\left\\vert u\\right\\vert ^{p(x)-2}u=\\mu\\text{ } &\\text{in}\\hspace{0.5cm}Q=\\Omega \\times ]0,T[,\\\\u=0 & \\text{on}\\hspace{0.5cm}\\Sigma =\\partial \\Omega \\times ]0,T[, \\\\u(.,0)=u_{0}(.) & \\text{in}\\hspace{0.5cm}\\Omega, \nwhere $ \\lambda>0$ and $ T $ is any positive constant, $ \\mu\\in\\mathcal{M}_{0}(Q) $ is any measure with bounded variation over $ Q=\\Omega \\times ]0,T[ $.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.51207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the study of the existence of a renormalized solution for quasilinear parabolicproblem with variable exponents and measure data. The model is:
u_{t}-\text{div}(\left\vert \nabla u\right\vert ^{p(x)-2}\nabla u)+\lambda\left\vert u\right\vert ^{p(x)-2}u=\mu\text{ } &\text{in}\hspace{0.5cm}Q=\Omega \times ]0,T[,\\u=0 & \text{on}\hspace{0.5cm}\Sigma =\partial \Omega \times ]0,T[, \\u(.,0)=u_{0}(.) & \text{in}\hspace{0.5cm}\Omega,
where $ \lambda>0$ and $ T $ is any positive constant, $ \mu\in\mathcal{M}_{0}(Q) $ is any measure with bounded variation over $ Q=\Omega \times ]0,T[ $.